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 Resumo 
Com o aumento da taxa de envelhecimento na Europa, têm sido adotadas estratégias que procuram 

prestar auxílio a esta faixa etária, tal como a melhoraria da sua qualidade de vida e otimização dos 

custos associados à saúde. Tais estratégias são baseadas na implementação de sistemas inteligentes, 

nomeadamente ambientes de vida assistida (AVA). Estes são um tipo de ambientes inteligentes 

adaptáveis que permitem prestar cuidados de saúde pessoais a qualquer indivíduo, monitorizando os 

seus hábitos diários, o seu estado de saúde e bem-estar, enquanto vive de forma independente no seu 

ambiente familiar, como a sua casa. Este sistema de monitorização destina-se a apoiar a população 

idosa, que, com o aumento da esperança média de vida, poderá desenvolver doenças mentais e físicas. 

Além disso, durante a pandemia de COVID-19, a maioria dos países adotou medidas de confinamento 

rigorosas, incluindo a necessidade de autoisolamento no ambiente doméstico. Idosos e indivíduos com 

determinadas condições médicas subjacentes foram particularmente afetados pela COVID-19, pelo 

que a implementação de tecnologias eficazes de monitorização da saúde e de ferramentas de 

assistência foi de extrema relevância. Nesta tese, é proposta uma solução AVA inovadora, baseada no 

desenvolvimento de nós de sensores inteligentes e algoritmos que permitem a análise não intrusiva 

de sinais vitais, do reconhecimento das atividades da vida diária e da monitorização da qualidade 

ambiental. Os dados fisiológicos foram adquiridos por sensores biomédicos inteligentes caracterizados 

por dispositivos wearable e não intrusivos. As condições de saúde física e cognitiva foram avaliadas 

através da monitorização das atividades básicas da vida diária através da implementação de 

tecnologias de localização indoor. O sistema proposto integra também soluções de monitorização da 

qualidade ambiental interior, que desempenha um papel importante na saúde e no bem-estar. Além 

disso, a investigação desta tese centrou-se na avaliação do impacto dos jogos sérios de realidade 

virtual no sistema nervoso autónomo, com o objetivo de identificar a viabilidade de integração destes 

sistemas virtuais num sistema AVA para estimular o estado físico e cognitivo. Por fim, foram integrados 

classificadores automáticos baseados em inteligência artificial nesta solução AVA, desempenhando um 

papel importante na classificação das atividades da vida diária e do comportamento humano, na 

deteção de níveis de stress e na estimativa do conforto térmico humano. O objetivo final deste sistema 

foi permitir a criação de uma solução AVA que integra uma variedade de sistemas de monitorização 

essenciais para o bem-estar e qualidade de vida. Os elementos-chave desta solução incluem a 

adaptação do ambiente inteligente às necessidades específicas dos indivíduos, garantindo cuidados de 

saúde personalizados nos seus ambientes de vida preferidos. 

Palavras-Chave: Ambientes de Vida Assistida; Ambientes Adaptáveis; Monitorização de Saúde; 

Monitorização da Qualidade Ambiental; Sensores Biomédicos Inteligentes; Inteligência Artificial; 

Monitorização das Atividades Diárias; Localização Indoor. 
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Abstract 
With the increase in the ageing rate in Europe, strategies have been adopted to help this demographic, 

aiming to enhance their quality of life while helping the optimization of healthcare associated costs. 

These strategies are based on the implementation of sophisticated systems, namely Ambient Assisted 

Living (AAL) systems. Ambient Assisted Living is expressed by a type of smart tailored environments 

that help to assure personal healthcare to any individual by monitoring their daily habits, health status, 

and well-being in a non-intrusive way, while living independently in a preferred environment, such as 

home. Such monitoring system is meant to support the elderly population, that with the increasing of 

life expectancy may develop mental and physical illnesses. Moreover, during COVID-19 pandemic, 

strict containment measures were adopted by most countries, including the need of self-isolation in 

the home environment. Older adults and individuals with certain underlying medical conditions were 

particularly affected by COVID-19, and therefore, the implementation of effective health monitoring 

technologies and assistive tools were of extreme relevance.  

An innovative AAL solution is proposed in this thesis, based on the development of smart sensor nodes 

and algorithms that enable a non-intrusive analysis of vital signs, recognition of daily life activities, and 

environmental quality monitoring. Physiological data was acquired by smart biomedical sensors 

expressed by wearable and non-obtrusive devices. Physical and cognitive health conditions were 

evaluated by monitoring the basic activities of daily living (ADL) through the implementation of indoor 

localization technologies. The proposed system also integrated indoor environmental quality (IEQ) 

monitoring solutions, particularly indoor air quality (IAQ), which play major roles in human health and 

well-being.  

Furthermore, this thesis research work focused on evaluating the impact of virtual reality serious 

games on the autonomic nervous system, aiming to identify the feasibility of integrating these virtual 

systems into an AAL system to stimulate both physical and cognitive state. 

Finally, artificial intelligence classifiers were integrated in this AAL solution, playing a major role on 

classifying daily life activities and human behavior, detecting stress levels, and estimating human 

thermal comfort based on the information provided by the developed sensor nodes. 

The final purpose of this system was to allow the creation of an AAL solution that integrates a variety 

of monitoring systems that are essential to human well-being and quality of life. Key elements of this 

solution include the adaptation of the smart environment to the specific needs of individuals, 

guaranteeing personalized healthcare within their preferred living environments. 

Keywords: Ambient Assisted Living; Smart Tailored Environment; Healthcare Monitoring; 

Environmental Quality Monitoring; Smart Biomedical Sensors; Artificial Intelligence; Activities of Daily 

Living Monitoring; Indoor Localization. 
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CHAPTER 1 

Introduction 
 

The development of smart environments, especially those tailored to the specific needs of 

individuals, has gained growing importance in recent years. This is motivated by the fact that there is 

a growing availability of technologies that allow the collection of sensitive data about the health status 

of an individual without requiring the intervention of health professionals. Furthermore, with the 

increase of life expectancy, permanent care and assistance for elderly people is an ever more necessary 

requirement. 

To meet these needs, the development of healthcare systems based on the Internet of Things (IoT) 

has been an important contributor to improving human quality of life, health, and life expectancy. 

These systems can rely on the acquisition of environmental data, as well as the acquisition of 

physiological and behavioral information from an individual, through the distribution of smart sensors, 

both in the environment and on the human body. These smart sensors can be expressed by wearable 

biomedical devices or sensing units embedded in daily used objects (e.g., chair, wheelchair), that can 

provide real-time information about the health status of an individual. Other environmental sensing 

systems can also capture indoor environmental parameters, such as air quality, noise levels, and 

lighting quality.  

The IoT architecture for healthcare purposes has been one of the industry’s expanding sectors; 

therefore, it has been widely explored by academia [1], with a special focus on creating personalized 

and effective health-monitoring systems for monitoring patients. In this context, smart homes or 

environments are technologies that provide fundamental services that help improve the quality of life 

of its inhabitants. Normally, these services are common automated mechanisms that provide the 

ability to monitor and control several home appliances, doors, windows, and even air conditioning 

systems. In this matter, many factors and services differentiate the types of smart home environments 

according to their final purpose. For instance, assistive services are specially tailored to the individual’s 

preference and basic needs and are part of what is designated as an assisted living environment. These 

services are based on acquiring high-level information from individuals by monitoring their 

physiological health and cognitive behavior.  

The ambient assisted living (AAL) concept precisely supports the inclusion of these assistive 

services in a certain environment. These environments include private homes, workplaces, assisted 

living facilities as well as healthcare facilities. AAL has the responsibility of deploying more 

sophisticated technologies for monitoring a person's health status, as well as assistive tools and 

devices, being specially designed to support elderly and chronically ill patients in their daily routine [2]. 
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Therefore, the main objective of AAL is to improve the quality of life of their inhabitants and help 

extend the time they can still live independently in their preferred environments. This can be achieved 

by deploying an ecosystem of wearable and non-wearable biomedical devices, as well as wireless 

sensor and actuator networks (WSANs). With the integration of web or mobile applications that allow 

the visualization of data collected by sensors and processed by computation platforms, these systems 

provide a complete overview of the patient’s health under specific environmental conditions. In this 

way, information regarding the patient's health is presented in an accessible format for better 

understanding and decision making by healthcare entities, such as medical doctors, caregivers, 

physiotherapists, and family members, while the patients live in their preferred environments. This is 

quite advantageous since hospital bills can be greatly reduced and better treatment is guaranteed if 

medical diagnostics are taken directly from the patient’s home [3]. Most patients and elderly people 

prefer to stay at their private home, rather than going to long-term care facilities or residential homes. 

Although these care services help stimulate social activities among the care community, it is also 

possible to achieve these results by enabling social interactions and physical activities associated with 

active aging in their own home, by monitoring their daily life activities and notify family members or 

caregivers whenever there might be social isolation or lack of mobility.  

1.1. Research Challenges 

As technology advances, there are always innovative solutions for assisted living systems and 

healthcare assessment. The implementation of healthcare monitoring systems based on the IoT 

concept has been a widely explored theme in recent years, as it helps prevent and diagnose possible 

health impairments in people, especially in the elderly population. Medical diagnostics taken directly 

from the patient’s home can greatly reduce hospital bills and allow better treatment. In this way, the 

proposal of new architectures for AAL systems is essential to improve quality of life and reach healthy, 

elderly, or disabled individuals. 

A great variety of AAL systems have been proposed in the literature for the last decade [4], with 

most projects providing efficient solutions to improve the patient’s quality of life and active life by 

monitoring of activities of daily living and their physiological status. Most projects are effective in 

monitoring human physiological status with the use of body sensor networks and others to monitor 

the activities of daily living using indoor localization techniques and machine learning algorithms. 

However, few or non-existent, consider the creation of smart assistive environments that consider the 

integration of various important assistive services into a single, fully implemented AAL system. These 

various assistive services include the assessment of physiological parameters, indoor environmental 

conditions, daily life activities and behavior, as well as physical and cognitive stimulation based on 

VR/AR implementations. Moreover, most healthcare assessment and indoor air quality (IAQ) 
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monitoring solutions available in the market do not offer open access to the collected data and do not 

support mobile compatibility.  

This thesis aims to address this gap by outlining the contributions detailed in the following 

subsection 1.2. 

1.2. Contributions 

This thesis’s main contributions are related to the research problems that were stated above. 

Hence, the development of a new solution for AAL environments that is meant to integrate the most 

important healthcare services that were not included in previous works found in the literature, is 

addressed. 

The proposed system is based on the implementation of four different assistive services:  

• Physiological parameters assessment: this is performed by the study of 

Photoplethysmogram (PPG) and Ballistocardiogram (BCG) signals collected from both 

developed wearable and non-wearable biomedical sensors. 

• Activity recognition and behavior monitoring: information of the user's cognitive health 

status was determined by monitoring their behavior and the activities of daily living (ADL). 

This was achieved based on indoor localization mechanisms, as well as the 

implementation of machine learning and data analysis algorithms. 

• Indoor environmental quality assessment: the integration of wireless sensor nodes to 

monitor indoor environments, namely the assessment and analysis of indoor air quality in 

real-time, was considered. 

• Physical and cognitive stimulation: the inclusion of VR serious games for physical 

rehabilitation and an analysis on how these systems can help improve physical, cognitive, 

and psychological conditions of the users (e.g., elderly and people with chronical diseases) 

was addressed. This contribution stands as a valuable proposition for their integration into 

AAL environments. 

• For system validation, this thesis includes the study of the influence of external or 

environmental stimuli on human physiological status and the autonomous nervous 

system, using the developed physiological and environmental sensor nodes. 

 

1.3. Scientific Outputs 

Throughout the preparation of this thesis, several scientific studies were produced as a result of 

the new AAL solution developed in this project. A total of 10 publications were made - first authorship 

of 3 scientific journals (Q1), first authorship of 2 book chapters (Q2), first authorship of 3 international 
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conference papers and co-authorship of 1 conference paper. The scientific publications are listed 

below: 

Scientific Journals 

• M. Jacob Rodrigues, O. Postolache, F. Cercas, (2020). "Physiological and Behavior Monitoring 

Systems for Smart Healthcare Environments: A Review". Sensors 20 8 (2020): 2186-2186. 

Published • https://doi.org/10.3390/s20082186 

• M. Jacob Rodrigues, O. Postolache, F. Cercas, (2022) "Unobtrusive Cardio-Respiratory 

Assessment for Different Indoor Environmental Conditions," in IEEE Sensors Journal, vol. 22, 

no. 23, pp. 23243-23257, 1 Dec.1, 2022  

Published • https://doi.org/10.1109/JSEN.2022.3207522  

• M. Jacob Rodrigues, O. Postolache and F. Cercas, (2023) "The Influence of Stress Noise and 

Music Stimulation on the Autonomous Nervous System," in IEEE Transactions on 

Instrumentation and Measurement, vol. 72, pp. 1-19, 2023, Art no. 4006819 

Published • https://doi.org/10.1109/TIM.2023.3279881 

 

Book Chapters 

• M. Jacob Rodrigues, O. Postolache, F. Cercas, (2021). Autonomic Nervous System Assessment 

Based on HRV Analysis During Virtual Reality Serious Games. In N. T. Nguyen, L. Iliadis, I. 

Maglogiannis, & B. Trawiński (Eds.), Computational Collective Intelligence (pp. 756–768). 

Springer International Publishing. 

Published • https://doi.org/10.1007/978-3-030-88081-1_57 

 

• M. Jacob Rodrigues, O. Postolache, F. Cercas, (2023). Wearable Tag for Indoor Localization in 

the Context of Ambient Assisted Living. In: Nguyen, N.T., et al. Computational Collective 

Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer 

International Publishing.  

Published • https://doi.org/10.1007/978-3-031-41456-5_32 

International Conferences with peer review 

• J. Araujo, M. J. Rodrigues, O. Postolache, F. Cercas, F. F. Martín and A. L. Martínez, "Heart Rate 

Variability Analysis in Healthy Subjects Under Different Colored Lighting Conditions," 2020 IEEE 

International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, 

Croatia, 2020, pp. 1-5 

Published • https://doi.org/10.1109/I2MTC43012.2020.9129619 

https://doi.org/10.3390/s20082186
https://doi.org/10.1109/JSEN.2022.3207522
https://doi.org/10.1109/TIM.2023.3279881
https://doi.org/10.1007/978-3-030-88081-1_57
https://doi.org/10.1109/I2MTC43012.2020.9129619
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• M. J. Rodrigues, O. Postolache and F. Cercas, "Autonomic Nervous System Assessment During 

Physical Rehabilitation Serious Game," 2021 IEEE International Symposium on Medical 

Measurements and Applications (MeMeA), Lausanne, Switzerland, 2021, pp. 1-5 

Published • https://doi.org/10.1109/MeMeA52024.2021.9478742 

• M. J. Rodrigues, O. Postolache and F. Cercas, "The Influence of Music Stimulation on Heart 

Rate Variability: Preliminary Results," 2022 IEEE International Symposium on Medical 

Measurements and Applications (MeMeA), Messina, Italy, 2022, pp. 1-6 

Published • https://doi.org/10.1109/MeMeA54994.2022.9856561 

• M. J. Rodrigues, O. Postolache and F. Cercas, " Wearable Smart Sensing and UWB System for 

Fall Detection in AAL Environments ", 2023 IEEE Sensor Applications Symposium, Ottawa, 

Canada, 2023. 

Published • https://doi.org/10.1109/SAS58821.2023.10254065 

Other publications 

1. M. L. Lima et al. 2020. Saúde Societal: Uma abordagem inclusiva do conhecimento em saúde. 

https://www.iscte-iul.pt/conteudos/iscte-saude/2080/saude-societal. 

 

1.4. Structure of the Thesis 

This thesis is organized in 6 Chapters: 

• Chapter 2 presents the state of the art of the current AAL solutions presented in the literature, 

characterized by vital signs monitoring systems. It identifies the most relevant physiological 

parameters that need to be considered in order to provide viable health diagnostics. Indoor 

localization technologies for user location and daily activities’ recognition are also addressed, 

as well as the most suitable machine learning and signal processing algorithms for activity 

recognition and pattern classification. Additionally, various monitoring solutions for indoor 

environmental quality assessment and cognitive and physical stimulation based on immersive 

environments are included in this chapter respectively. 

• Chapter 3 makes a description of the proposed smart tailored environment system for an AAL 

implementation, which follows a healthcare-focused IoT architecture. Its hardware and 

software components are described. 

• Chapter 4 addresses three different studies that made use of the developed physiological and 

environmental sensor nodes to perceive how environmental factors and other external stimuli, 

such as music and stress noise, as well as the practice of virtual reality serious games, may 

affect our physiological status and nervous system. A validation of the developed sensor nodes 

https://doi.org/10.1109/MeMeA52024.2021.9478742
https://doi.org/10.1109/MeMeA54994.2022.9856561
https://www.iscte-iul.pt/conteudos/iscte-saude/2080/saude-societal
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is presented using biomedical reference systems, and the use of machine learning models is 

explored to estimate human thermal comfort and stress levels based on the acquired 

physiological data. 

• Chapter 5 focuses on the indoor localization and behavior monitoring component of the 

proposed system.  Machine learning algorithms were used to perform activity recognition, 

namely the most performed daily activities. Moreover, the chapter shows the system’ 

capability on detecting fall events, highlighting its potential for guaranteeing user safety and 

well-being. 

• Chapter 6 summarizes the results reported in this thesis and delineates the future directions 

of this research.
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CHAPTER 2 

State of the Art 
The adaptation of the surrounding environment to the physiological needs of its inhabitants has been 

one of the key objectives of smart tailored environments. These environments are built around a 

sensor network that provides real-time data about the health-status of an individual, as well as key 

environmental quality indicators. The ability to process this data and help improve quality of life is 

what makes these solutions so indispensable, especially when considering their integration in ambient 

assisted living (AAL) environments [5]. This chapter encompasses a concise literature review on all the 

necessary components for the implementation of a smart tailored environment, specially an AAL 

environment.  

 

2.1. Health Status Assessment Systems 

2.1.1 Cardiovascular Monitoring 

The monitoring of physiological parameters and daily activities of patients is the main objective of 

healthcare services related to the implementation of assisted living systems. Wearable medical sensors 

are essential components, as they collect health-related information that can be used to elaborate 

real-time diagnostics of human health conditions [6]. As noted earlier, an AAL system may be based 

on medical sensors that, when connected to home gateways, send medical data to health monitoring 

systems in real-time. Wireless sensor networks (WSNs), an integral part of IoT architectures, are used 

to connect sensors to smart gateways and healthcare applications, thus allowing caregivers or 

physicians to monitor patients remotely, commonly represented by the architecture depicted in Figure 

2.1. 

 

FIGURE 2.1. Overview of a wireless sensor network architecture for healthcare systems 
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To assess an individual's health and their response to external factors, it is essential to monitor 

various physiological parameters that are relevant. Over the years, the following five vital signs have 

been examined: temperature, heart rate, blood pressure, respiratory rate, and blood oxygen 

saturation [7]. These can be obtained through non-invasive and non-intrusive sensors, which can be 

included in long-term health monitoring systems [8]. Such sensors are mostly referred to as wearable 

sensors. They can monitor and record real time information concerning an individual’s physiological 

condition and motor activities, without causing discomfort nor interrupting the practice of their daily 

activities. These biomedical sensors measure physiological signs that can be used to obtain 

electrocardiograms (ECGs), electromyograms (EMGs), photoplethysmograms (PPGs), 

seismocardiograms (SCGs), ballistocardiograms (BCGs), blood pressure and body temperature and 

determine the heart rate (HR), oxygen saturation (SpO2), respiration rate (RespR) and many other 

parameters. These sensors are generally connected in a wireless body area network (WBAN) or body 

sensor network (BSN) and can be placed directly on top of the skin, over clothes or even implanted in 

the person’s tissue. 

A. Electrocardiography 

There are several methods to record and monitor cardiac activity using non-invasive techniques. 

The most widely used technique and diagnostic tool for healthcare environments and considered the 

“gold standard” technique for monitoring cardiovascular activity is the ECG, which measures the 

electrical activity of the heart. An ECG is visualized by the formation of a waveform characterized by 

five peaks and valleys named P, Q, R, S and T, respectively, as demonstrated in Figure 2.2. Each one 

reflects the physiological conditions of the patient’s heart and its main blood vessels. The QRS complex 

indicates ventricular depolarization and has a short duration if the heart is working efficiently. The R 

wave, or peak, is the first positive wave of the complex and it is used to determine the patient’s HR 

and heart rate variability (HRV), regarding the time between its occurrences (called RR intervals) [9], 

[10]. 

 

FIGURE 2.2. ECG signal with representation of the QRS complex and R-R intervals 
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The electrocardiography method uses Ag-AgCl electrodes (wet electrodes) that must be affixed in 

specific areas of the body. However, the electrode has a conducting gel that surrounds it, which serves 

as a conduction medium between the skin and the electrode. This gel can cause irritant effects on the 

skin when used continuously for longer periods. Another potential drawback associated with long-

term use is the surface degradation of electrodes, which leads to the deterioration of signal quality 

[11]. For this reason, ECG monitoring based on wet electrodes is less reliable when considering long 

term monitoring of cardiac activity and it cannot be used without affecting the individual’s daily 

activities.  

Several alternatives for replacing these traditional electrodes have been suggested in the 

literature. Dry textile electrodes can be embedded in custom clothes, such as undershirts and bras, for 

ECG recording. This method proved to be usable for continuous ECG monitoring as stated in [12] and 

[13]. The characteristics of hydrophilic and flexible material such as the hitoe® textile electrode (Toray 

Industries Inc., Tokyo, Japan)[14], allows an easy adaptation to the human’s skin surface, while it is 

highly conductive and allows a non-invasive and continuous ECG recording. Other authors [15] 

designed textile electrodes that combine a motion sensor with a textile-based electrode. The 

synchronism between the two signals is beneficial for the diagnosis of heart diseases, since variations 

in heart rate may occur during or following certain behaviors, such as changes in posture or gait 

patterns. Also, the association of daily physical activity derived from motion data with an ECG is very 

useful for cardiologists as it can help them determine the cause of a certain heart disease, e.g., 

abnormal ECG caused by over-exercising. Based on the numerous advantages of e-textile electrodes, 

many other researchers reported the use of such technology and materials for wearable ECG 

monitoring systems [16]–[19]. Smart textile systems based on fiber optic sensors have also shown to 

be a viable method to monitor respiratory and cardiac activity, as the system proposed in [20], which 

implements a smart textile based on a fiber Bragg grating (FBG) to detect small chest motions induced 

by the heartbeat.  

B. Photoplethysmography 

The photoplethysmography (PPG) technique has proven to be a great alternative over the ECG 

[21], [22], especially for HRV, HR and SpO2 measurements. It is considered a non-invasive and 

unobtrusive method. It uses a light source and a photodetector placed in contact with the skin’s surface 

to measure volumetric variations of blood circulation in veins and arteries [23].  

Optical absorption or reflection of the light is associated with the amount of blood flow that is 

present in the optical path. Changes in blood volume are synchronous with the heartbeat. A PPG sensor 

is usually placed at peripheral body sites, to measure the volumetric variations in the microvascular 

beds [24]. Parts of the human peripheral vascular system that can be used to place the sensor’s 

coverage area include the finger, earlobe, and forehead.  
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The PPG optical sensors are either based on transmission or reflection mode measurements 

(Figure 2.3 a). In the transmission measurement mode, the infra-red LED is placed on the human tissue 

on the opposite side of the photodetector, to detect the residual light from the LED after being 

absorbed by the tissue. In the reflective PPG, the light source and photodetector are placed side by 

side, thus measuring the intensity of light that is reflected from the skin (Figure 2.3 b). The choice of 

each technique will depend on the body area where the sensors are to be placed. 

The PPG waveform is characterized by a systolic peak, dicrotic notch and a diastolic peak. The 

systolic peak amplitude indicates the change in blood volume after an increase of arterial blood flow 

that is preceded by the heartbeat. The distance in time between two consecutive systolic peaks 

represents the completion of a heart cycle, and thus, similarly to the R-R interval of the ECG signal, it 

is used to measure the HR and HRV. 

 

 

FIGURE 2.3. Working principle of the PPG sensor: a) transmission, b) reflection modes.  
Representation of the PPG signal and the systole and diastole cardiac cycle events. 

Many researchers have relied on the PPG method to monitor cardiac activity. Most systems are 

designed wearable solutions that do not offer any constraints when in use, thus helping maintain the 

normal execution of the daily tasks of their users, as demonstrated in [25]. Thinking on multi-sensory 

devices, the authors in [26] designed a wrist worn device that included a channel for cardiac activity 

monitoring based on PPG and a body kinematics measurement channel for daily motor activities 

assessment, therefore enabling multiparametric monitoring in non-invasive and non-obtrusive ways.  

Mary et al. [27] reported the development of a physiological parameter measurement system 

based on wearable devices to monitor human body temperature, heart rate and oxygen saturation 

using PPG signal.  



11 

PPG also poses as a great solution for real-time and continuous detection of atrial fibrillation (AF), 

one of the most common types of arrhythmias. The detection of this cardiac rhythm disturbance can 

be based on the implementation of statistical analysis, machine learning and deep learning 

approaches. Pereira et al. [28] reviewed different studies based on these algorithms for AF detection 

through the evaluation of PPG signals. The authors highlight the main challenges that PPG-based AF 

detection comprises in clinical applications and how the different classification approaches address 

those limitations. 

C. Ballistocardiography 

Additional unobtrusive techniques include ballistocardiography (BCG), which is used to measure 

repetitive motions of the human body, associated with cardiac cycles. The BCG signal is demonstrated 

in Figure 2.4. It is one of the oldest non-invasive methods for cardiac–respiratory monitoring and can 

be used to get information about the activity of the heart, its condition and breathing patterns. Its 

graphical representation consists of the action–reaction force caused by the heartbeat and the pump 

of blood through the aorta [29]. The IJK wave complex from the BCG represents the ejection phase of 

the cardiac cycle. These main waves and time intervals between them reflect the physiological 

condition of the subject’s heart and its main blood vessels. BCG systems can either require mechanical 

connection between the subject’s body and the sensor or can be performed by contactless devices, 

which are, for example, ultrasonic sensors [30] and the microwave Doppler radar [31]. The main 

devices requiring mechanical contact are piezoelectric sensors, load cells, sternal accelerometers, and 

electromechanical film sensors (EMFi). The robustness of BCG monitoring systems based on EMFi 

sensors has been evidenced in its large number of implementations [29], [32]–[34]. However, the 

adoption of this solution in medical facilities is still limited in present days. 

 
FIGURE 2.4. BCG signal with representation of the IJK complex 

Innovative solutions that have been emerging in the literature have a new way to provide 

advanced and continuous physiological signal acquisition rely on the development of soft electronic 

circuits and highly stretchable systems. Electronic systems that can be attached to the epidermis allow 

a more comfortable and accurate measurement of human physiological conditions, when compared 

to the traditional systems. The physical properties of such devices offer levels of stretchability and 
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thickness that are compliant to those of the skin, allowing a more precise and noninvasive mechanical 

connection with its surface, and therefore reduce motion artifacts and other limitations usually offered 

by common wearable systems. 

Different studies have reported the development of multifunctional sensing platforms based on 

epidermal electronic system of ultrathin and soft stretchable electronic layouts [35]–[37]. These 

systems can acquire ECG, EMG, electrooculograms (EOGs) and electroencephalograms (EEGs), while 

allowing long-term human health monitoring without constraining body movements and affecting the 

person’s daily activity. These systems may incorporate microfluidic constructions to allow elastic 

stretchability and flexibility and at the same time, mechanically isolate rigid electronic materials [36]. 

Another innovative solution based on a stretchable and lightweight wearable device was presented by 

Ha et al. [38]. An electronic tattoo (e-tattoo) was developed for both ECG and SCG measurement. The 

authors relied on a piezoelectric polymer, polyvinylidene fluoride (PVDF), to construct a stretchable 

vibration sensor capable of acquiring SCG signals. The synchronous collection of data from both ECG 

and SCG techniques increased the system’s efficiency on determining cardiac health conditions.  

The novel characteristics of these new wearable technologies are very promising for the future 

implementation of healthcare monitoring systems related to ambient assisted living. A selection of the 

available techniques for vital signs monitoring reported in the literature is presented in Table 2.1. 

TABLE 2.1. Vital signs monitoring techniques 

Method Working Principle/Application Monitored 
Signals Reviewed Works 

Electrocardiography 
(ECG) 

Measurement of electrical 
activity of the heart.  

HR, RR [12], [15]–[19], [35], 
[36], [38] 

  
Photoplethysmography 

(PPG) 
 

Optical measurement of blood 
volume changes in 
microvascular bed 

 

HR, SPO2, RR, 
Blood 

pressure 

[25]–[27] 
 

Seismocardiography 
(SCG) 

 

Measurement of micro-
vibrations of the chest wall 

produced by the heart 
contraction and blood flow 

HR, RR  [20], [38] 
 

Ballistocardiography 
(BCG) 

Measurement of hole-body 
micro-vibrations associated 

with the cardiac cycle 
 

HR, RR, 
Blood 

pressure 

[29]–[34] 
 

Contact thermometry Temperature measurement 
based on conductive heat 

changes between the surface of 
skin and a temperature sensor  

Skin 
temperature 

[39]–[43] 
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D. Autonomous Nervous System Assessment 

In addition to monitoring cardiovascular status, these methods can also be used to measure the 

autonomic nervous system (ANS) response and the person’s emotional state. This is done through HRV 

analysis, which is based on the study of the variation of the time interval between consecutive heart 

beats (RR intervals or peak to peak intervals). This analysis can quantify the sympathetic and 

parasympathetic nervous system to understand the overall status of the ANS (Figure 2.5). Its clinical 

importance includes the possibility of predicting mortality after the occurrence of an acute myocardial 

infarction, diabetic neuropathy, and other neurologic disorders [9], [10]. Both branches of the ANS are 

involved in the regulation of HR, with the sympathetic activity having a tendency of increasing the HR 

and decreasing HRV, whereas the parasympathetic activity decreasing the HR and increasing HRV [44].  

 
FIGURE 2.5. The autonomic system and its influence in heart rate variability 

HRV can be evaluated by three different methods [9], [10]: time-domain, frequency-domain, and 

non-linear methods. The simplest to implement is the time domain measurement, in which the time 

interval between successive heart beats is determined. The most common time-domain variables for 

statistical measurements include the mean RR interval, mean HR, the difference between the shortest 

and longest NN interval (where NN corresponds to time intervals between normal pulse peaks), 

standard deviation of the NN intervals (SDNN), root mean square of successive NN interval differences 

(RMSSD), standard deviation of successive NN interval differences (SDSD) and the number of 

successive intervals differing more than 50 ms (NN50). Frequency domain methods are better to 

discriminate between sympathetic and parasympathetic activities of the HRV. The power spectrum 

density (PSD) is estimated, in most cases, using a Fast Fourier transform (FFT) and provides basic 

information about the distribution of power (i.e., variance) over frequency. For short term recording 

periods, whose standard is 5 minutes, three spectral components are measured [9]: the very low 
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frequency (VLF, 0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and high frequency (HF, 0.15–0.4 Hz). The 

HF reflects the activity of the parasympathetic nervous system, while in the other hand, it is commonly 

accepted that LF reflects sympathetic activity [45]. Several studies support this, but many others 

suggest that this component may result from both sympathetic activity and parasympathetic activity. 

Additionally, it is proved that the RMSSD parameter is correlated with the HF power, and thus, can give 

an insight of parasympathetic activity when shorter-term recordings of HRV are considered (< 5min) 

[45]. On the other hand, SDNN values reflect sympathetic and parasympathetic activity. However, this 

measure does not discriminate between changes in HRV that are caused by an increase in sympathetic 

tone or vagal withdrawal [46]. 

HRV analysis in the frequency domain is commonly performed using FFT, as previously mentioned. 

Time-frequency transforms are important in the analysis of cardiac activity, especially regarding HRV, 

because they allow the decomposition of complex signals into their frequency components, which is 

useful for quantifying parasympathetic and sympathetic activity. Furthermore, short-time Fourier 

transform (STFT) is a signal processing technique that has been used to give additional insights about 

HRV [47], [48]. This time-frequency transform allows a more detailed analysis of the HRV signal, as it 

decomposes the signal into a series of frequency components over time. This allows to assess how the 

balance between sympathetic and parasympathetic control of the autonomic nervous system changes 

over time, allowing to identify possible changes in ANS balance that may be related to external 

stressors. 

Finally, non-linear methods are also used to analyze HRV. The most common measures are the 

Poincaré plot, approximate entropy (ApEn), sample entropy (SampEn), detrended fluctuation (DFA), 

correlation dimension and recurrence plots [10]. SampEn is a method that quantifies the complexity 

and unpredictability of a time series signal, while ApEn is an improved variation of SampEn more robust 

to small perturbations present in the time series signal. The analysis of such measures can give more 

information about the degree of irregularity in the HRV and quantify pattern repetition in the time-

series signal. The sensitiveness to these changes in HRV makes the use of such measures a possible 

way of detecting different physiological and pathological conditions, such as heart disease, and stress 

[49]. 
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The time-domain, frequency-domain, and nonlinear methods for HRV analysis are summarized in 

Table 2.2. 

TABLE 2.2.  Heart rate variability parameters 

Parameters Units Definitions 

Time-domain analysis 
Mean HR bpm Mean of heart rate values 

Mean RR ms Mean of RR interval time series 

SDNN ms Standard deviation of successive NN intervals 

RMSSD ms Root mean square of successive NN interval differences 

SDSD ms Standard deviation of differences between adjacent NN intervals 

NN50 ms Number of successive intervals differing more than 50 ms 

Frequency-domain analysis 

VLF, LF, HF ms2 Power in Very-Low, Low, and High frequency range, respectively 

LF/HF - Ratio between LF [ms2] and HF [ms2] 

Non-linear methods 

ApEn - 
Quantifies the regularity and complexity of the time series. It 
measures the unpredictability of the variation of successive RR 
intervals.  

SampEn - Improved evaluation of time series regularities (Modification of 
ApEn). 

DFA - 
Quantifies the presence or absence of fractal correlation 
properties of time series data. It permits the estimation of long-
range correlation in non-stationary time series [50]. 

 

2.1.2. Exploring the effects of external Stimuli on the Autonomous Nervous System and Stress 

Levels 

A. Music Stimulation  

The positive effects that music sound stimulation presents on a subject’s health, HRV and cognitive 

performance have been addressed in the literature for the last decades.  Investigations in this area 

started more than twenty years ago, one example being the experiments conducted by Honda et al. 

[51], in which they intended to study the effects of music and noise on heart rate variability.  
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Exploring the effects of music on arousal and relaxation will depend on the characteristics of the 

music pieces themselves. Relaxing music genres typically feature a slow tempo of approximately 60 

bpm, minor dynamic changes, simple rhythms and sounds of nature, as suggested by therapists [52]. 

In contrast, exuberant, happy, and exciting emotions are generally associated with music pieces that 

feature fast tempo, loud dynamic levels, and higher pitches. Besides these characteristics, the 

instrumentation part can also bring different emotive responses to music. 

Preference for heavy metal and rock-and-roll music was found to have a substantial positive 

correlation with anxiety states in most participants [53]. This may be explained by the instrumental 

timbres of electric guitars and distortion sounds, heavy bass and dense drum sounds present in the 

heavy metal music genre. 

As initially observed by Honda [51], noise and rock music were more likely to induce stress than 

classic music and tended to cause discomfort among participants, as seen by the apparent stimulation 

of the sympathetic nerve.  Regarding this musical genre, classical music has shown to bring benefits on 

the cardiovascular system. Bernardi et al. [54] examined the effects of music with vocals, orchestra, 

and progressive crescendos  on heart rate, respiratory rate, blood pressure, middle cerebral artery 

flow and skin vasomotion. Specific musical auditory stimulation, according to the authors, may 

synchronize autonomic responses, hence regulating cardiovascular physiology. Independently of 

individual choices, cardiorespiratory variables increased with faster tempo. 

More recently, Kirk et al. [55] also investigated whether music can be an alternate way to improve 

cognitive performance as well as providing positive physiological effects. Piano, Jazz and lo-fi beats 

music were considered for these experiments. HRV assessment was made using an ECG, and elevated 

parasympathetic activity, denoted by higher RMSSD, was present in all the three music groups, when 

compared with a no-music testing group. Moreover, music that was familiar to the subjects induced 

an immediate improvement of cognitive performance and increase of HRV levels.  

Similarly, Trappe et al. [56] monitored cardiovascular activity during classical and pop music 

stimulation. The measured variables comprised diastolic blood pressure, heart rate and serum cortisol 

concentrations. It was observed that classical music significantly lowered systolic and diastolic blood 

pressure and heart rate levels, unlike pop music genre. Characteristics of a compositional form such as 

tempo, harmonic sequences and dynamics have a major influence on nervous system activity and, in 

turn, on the cardiovascular system. The authors also did not find an association between musical 

genres and the subject’s listening preferences on blood pressure changes and heart rate.  
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Introducing a faster-paced musical genre, Amaral et al. [57] investigated the effects of baroque 

and heavy metal music with different intensities, i.e. different sound levels, in HRV of female 

volunteers. When compared to a control group (resting period before auditory stimulation), heavy 

metal music stimulation at higher intensity lowered the SDNN index. The investigation showed that at 

lower intensities, auditory stimulation with baroque and heavy-metal music reduced global HR 

modulation. However only heavy metal at higher sound levels lowered the HRV. When making the 

same experiments with men volunteers, musical auditory stimulation of various intensities presented 

no effects on cardiac autonomic regulation [58]. 

The beneficial effects of music sound stimulation on human physiology have also been studied 

among participants with particular medical conditions [59]–[61].  Mir et al. [62] conducted an 

experiment with 15 pre-hypertensive young adults that received  music therapy based on relaxing 

piano and flute soundtracks for 4 weeks, along with a dietary plan for treating hypertension. A control 

group of pre-hypertensive only following the dietary plan was considered. Authors observed that 

music therapy significantly lowered systolic blood pressure and HR, indicating that there might be a 

potential intervention for preventing the development of pre-hypertension towards hypertension in 

young adults. 

Additionally, stress levels, which may lead to the occurrence of several physiological events, not 

only are monitored through the analysis of HRV parameters [63], can also be measured through the 

perception of changes in skin conductance, through galvanic skin response (GSR), as well as through 

the monitoring of bioelectrical activity of the brain, using EEG. GSR, for instance, is often used to assess 

the user’s emotional states, other than stress, and it is an additional method that has increasingly been 

considered by researchers for improving music recommendation systems [64]. Alternatively, Paszkiel 

et al. [65] evaluated the impacts of different sounds - rap, relaxing music and autonomous sensory 

meridian response (ASMR) triggering music - in stress levels, based on the analysis of EEG signals. That 

study indicated that rap music negatively affects stress levels reduction when compared to a control 

group with no sound, denoted by a decrease in brain alpha-wave frequencies and an increase of blood 

pressure. On the other hand, relaxing music and ASMR induced calmness and relaxation much quicker 

than silence.  

When exploring the applicability of musical stimuli for older age groups, particularly for elderly 

with dementia, it was reported in literature that this type of stimulus brings positive outcomes. 

Maseda et al. [66] reported positive effects on mood and behaviour of older adults with severe 

dementia, as well as a decrease in heart rate and increase of blood oxygen saturation after 

individualized music interventions. A systematic review performed by Lam et al. [67] also validates the 

positive impact of music therapy on older people living with dementia, where several studies report 

significant improvements in language fluency and reduction of anxiety and depression feelings.  
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Based on the observations made in these studies, our current research aims to analyse the effects 

of musical stimuli involving ambient, classical, and metal music genres. In addition to music with more 

relaxing characteristics, the heavy metal music genre was considered since it is a music genre that is 

connoted as a possible cause of stress and anxiety, in contrast to classical and ambient music. Thus, 

we intend to verify such hypotheses and whether in fact this music genre may induce levels of anxiety 

and stress, using HRV analysis. 

B. Stress Noise Stimulation 

Other auditory stimuli also present in the environment in which we live every day include 

background noise. These sound stimuli, which may include several types of sounds differing in 

frequency and intensity, may have several effects on our health, namely on the nervous system. 

Several studies in the literature have analyzed how these stimuli and these potential stressors affect 

HRV. For example, Sim et al. [68] analysed the impact that different types of noise below 50 dBA may 

have on the ANS of men volunteers, unlike other studies that consider sounds above 50 dBA. Significant 

alterations of several HRV parameters were observed after noise exposure. Higher noise levels ranging 

from 50 dBA to 80 dBA also showed to affect the ANS balance, especially in the LF/HF parameter from 

HRV, as reported by Lee et al. [69]. Focusing more on the noise frequencies, Walker et al. [70] reported 

several changes on the stress responses of men to short-term exposures to low-frequency noise (31.5 

Hz – 125 Hz) and high-frequency noise (500 Hz – 2000 Hz). Although no significant changes were found 

in blood pressure and salivary cortisol, the noise exposure seemed to have a negative impact on HRV, 

specially the low-frequency noises. Similarly, Nakajima et al. [71] changed the frequency components 

of a music piece by amplifying the high and low-frequency domains. The authors found that enhancing 

the high frequency components of the music have a positive impact on stress levels, since stress 

recovery was more pronounced after listening to the high-frequency version of the music when 

compared to the low-frequency or even the original music piece.  

Most studies are only considering young volunteers, in their 20s, and most of them are males. 

Although it has been proven that HRV varies with gender and age, it is necessary to include a greater 

diversity of ages and genders, therefore increasing its validation, so the system to be proposed is 

suitable for elements of any age and gender. By addressing the limitations presented in previous 

studies, no restriction was applied to the age and gender of participants in these experimental studies. 
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2.2. Body Motion and Daily Activities Monitoring 

In addition to the monitoring of physiological signs, there is another equally important concept in AAL, 

which is the monitoring of gait parameters that characterize a person’s locomotion, and the 

monitoring of activities of daily living (ADL).  

2.2.1. Body Motion Monitoring and Fall Detection  

Monitoring an individual’s walking patterns can provide important data about their health 

conditions. Gait disorders, for example, may be caused by neurological conditions, orthopedic 

problems, and medical conditions [72]. Moreover, the need for detecting fall events has become 

increasingly important, since older adults require great care, especially in this matter. Falls are one of 

the most common problems among the elderly and can lead to serious health problems if not detected 

in time. They are the leading cause of accidental death globally in people over 60 years old [73]. 

However, for all age groups, it is the second leading cause of unintentional injury death, preceded by 

road traffic accidents. Injuries following a fall tend to become more severe with advancing age, with 

more than half of all falls resulting in at least a mild injury, such as a bruise or muscle strain. There are 

several factors that may trigger a fall, resulting from a combination of balance and mobility problems, 

the presence of obstacles that hinder walking, loss of mass and muscle strength, neurological or 

cardiovascular problems, vision problems, among many others [74].  Frequently, there are no 

symptoms felt by the person before the fall. However, in some cases a sensation of dizziness or an 

irregular heartbeat may appear.  The urgency in treating these injuries is a factor that exponentially 

helps the person's survival rate. The speed of response to this problem will depend entirely on whether 

the individual is alone in the environment where the fall occurred or not. In cases where the individual 

lives alone at home, or even in a nursing home, remote monitoring is indispensable so that relatives 

and health entities can respond and act as quickly as possible. 

For monitoring such events, several solutions are available in the literature. Vision-based systems 

and cameras are very useful to monitor gait activities and fall events. However, despite the high 

accuracy achieved, there are some constraints that limit their use. Some limitations include privacy 

issues, and the fact that the user must always remain in line of sight and within a specific range from 

the camera, which somehow prevents continuous monitoring of gait activity. Alternatively, wearable 

motion sensors based on accelerometers and gyroscopes are a great solution to assess gait dynamics 

and body posture. Several key features can be extracted from the sensors based on the linear and 

angular motion measurements obtained from body kinematics [6].  

Most fall detection systems follow a common methodology, which starts by data collection, data 

pre-processing, feature extraction and finally the classification and evaluation of such activities [75], 

[76]. Wearable sensors are often used for data acquisition, as they enable the collection of a variety of 
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data, such as kinematics and physiological signals. Kinematic information expresses measurements 

related to the motion or movement of an object. These features can be collected by a variety of 

wearable sensors, such as accelerometers, gyroscopes, and magnetometers, and can be used to detect 

fall events. However, many researchers solely rely on the use of one sensor for fall detection, such as 

the accelerometer [77]–[80]. The performance of a Machine Learning (ML) model may be lower in this 

case compared to the cases where multi-sensor data fusion is considered. The introduction of other 

data such as the rotational speed of the body in the X, Y and Z axes, measured by a gyroscope, will 

improve the ML’s ability to distinguish between different activities. Other researchers have also used 

barometric pressure sensors in conjunction with an IMU [81], as well as instrumented insoles that 

measure the pressure and forces applied during movement [82].  

In AAL systems, the use of wearable sensors based only on inertial measurement units (IMU) has 

been a usual approach in the detection of the most common activities of daily living, like standing, 

walking, sitting, laying down and going upstairs and downstairs. Hiram Ponce et al. [83] analyzed single 

IMU sensors placed at different locations in the body to determine the minimal number of sensors 

needed to develop an accurate fall detection system. The best position was found to be at the waist. 

A minimal sensor-based fall detection system was then implemented using a smartphone, which 

achieved an overall accuracy of 87.56%. Good performances are achieved by ML algorithms in 

distinguishing these activities. However relevant information regarding the person’s location when 

performing those activities is not collected. Technologies for indoor localization are integrated in AAL 

systems to address this limitation. 

Other fall detection systems will be further addressed in Section 2.4. 

2.2.2. Indoor Localization for Daily Activities Monitoring  

Monitoring systems for assisted homes may include the capability of recognizing behaviors and 

certain patterns of human daily activities, to mediate and detect possible symptoms of a certain 

disease, whether mental or physical. ADL addresses the daily life activities of people in their own home 

environments, without requiring any assistance to execute them. The ability to perform such 

elementary routines while aging determines the person's physical and psychological health status and 

their ability to live independently. Such monitoring helps to track possible developments of mental 

illnesses associated with aging, namely Alzheimer’s, Parkinson, and other levels of dementia. ADLs 

mainly comprise activities that are based on hygiene, mobility levels, dressing, eating and continence 

(Figure 2.6). In short, ADL addresses any task associated with physical self-maintenance that is essential 

to ensure the health and well-being of an individual.  
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FIGURE 2.6. Activities of daily living. Source: [84] 

There are many factors to consider when monitoring such activities, namely the choice of 

technology to be used for activity recognition, as well as its ability to be deployed in households, its 

usability and privacy levels. Several studies regarding the monitoring of the user’s behavior and daily 

routine are expressed by systems based on wearable sensors, video surveillance, appliance monitoring 

and distributed sensors throughout the house. However, the implementation of such sensing 

technologies may raise several privacy concerns, due to their ability to assess relevant information 

about people’s lives. In fact, the most accurate mechanisms for activities recognition and monitoring 

include video-based strategies, such as video-cameras or thermal-cameras. The implementation of 

such technology is not always accepted by the users, and most rooms cannot be accessed due to heavy 

privacy violations. As an alternative, the use of low-informative sensors, such as magnetic switches, 

infrared motion sensors, pressure sensors, ultrasonic sensors, among others, poses as a better strategy 

that preserves the desired privacy levels. Despite being less informative about human activities, the 

installation of multiple instances of these sensors throughout the house and the implementation of 

sensor data fusion can overcome that limitation. 

 The most used technologies for indoor localization are included in Table 2.3, and are expressed 

by mechanical, magnetic, acoustic, radio frequency and light-based methods. 
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TABLE 2.3. Classification of indoor tracking and localization technologies. 

Mechanical Magnetic Acoustic Radio 
Frequency Light 

Pressure sensor 

Proximity sensor 

Vibration sensor 

Accelerometer 1 

Gyroscope 1 

Magnetic field 
sensor  

[85]–[88] 

Ultrasonic 
sensor 

[89]–[92] 

Microphone  
[93], [94] 

Wi-Fi 

Bluetooth 

ZigBee [95] 

RFID 

UWB 

Infrared sensor 

Photelectric sensor 

Camera/Video 
recording [96] 

LIDAR 

     
1 Wearable Sensors 

Some mechanical-based systems are considered obtrusive, such as accelerometers and 

gyroscopes, since they need to be attached to the surface of a target, in this case, the human body. 

Nonwearable sensors are less intrusive and can be placed in stationary locations of a house or a room. 

They can provide significant information about performed activities whether by monitoring the 

operational status of objects, detecting movement in a room, measure room temperature, monitor 

the opening/closing of doors, and so on. As an example, Fleury et al. [93] developed a system for 

detecting ADL based on different sensing technologies: Infrared presence sensors were used for 

location purposes (e.g. detection of movement) and placed at strategic locations; door contacts were 

fixed on relevant home appliances (e.g. fridge, cupboard and dresser) to monitor its usage; 

microphones were used to process and identify different sounds of daily living activities (e.g. speech, 

door shutting, phone ringing, walking sound, among others); and wide-angle web cameras were 

deployed to timestamp ADLs for supervised machine learning algorithms. The authors also placed 

temperature and hygrometry sensors in the bathroom to detect activities related to hygiene. 

Additionally, a wearable kinematic sensor with accelerometers and magnetometers was also 

implemented to detect and classify transitions in posture and walking periods.  

The authors in [97] recorded data relative to ADL in two different households for one week. The 

user’s localization was based on multiple low-informative sensors fitted in the house, such as magnetic 

contact and motion sensors, microphones, and power meters. These sensing technologies were 

considered enough to get an insight into the user’s activities and were strategically placed over 

different rooms of the house. 

More projects for ADL monitoring include the Washington State University’s project named CASAS 

(Centre of Advanced Studies in Adaptive Systems) [98], that was meant to develop a smart home and 

detect broad activities such as eating, sleeping or wandering. The smart apartment was populated with 

various types of sensors to detect movements (mainly by infrared/light sensors), the usage of certain 

home appliances and items, energy consumption and environmental temperature, and to perceive the 



23 

state of doors and lights. An example of the sensor’s distribution for such monitoring systems is 

presented in Figure 2.7. The CASAS project also implemented machine learning techniques for human 

activity recognition, based on generated events from the sensors.  

 
FIGURE 2.7. Distribution of low-informative sensors in a house for ADL recognition. Source: [98] 

Considering the implementation of sensor networks for detection of behavioral patterns, the use 

of light dependent technologies, such as infrared and photoelectric sensors, can lead to some issues. 

These sensors may produce wrong outputs (e.g., false positive or false negative triggers). Failure in 

these sensors can lead to a misinterpretation of the subject’s health status and bring negative 

consequences to their health. Regarding this limitation, Nancy ElHady et al. [99] made a systematic 

literature review on sensor fault detection and fault tolerance in AAL environments. A sensor failure 

in a AAL environment can be considered as a fault if the sensor has stopped responding (fail-stop 

failure) or if the sensors are still responding but the reported values are not representative of the 

measured variable, nor the type of event that is supposed to be detected (non-fail-stop failure) [100]. 

The last type of failure can be caused by external factors that trigger these false events, such as 

changing the location of the furniture where the sensors are installed to a different area, or slightly 

changing the position of sensors, or due to the covering of sensors whether by unwillingly placing 

objects in front of them [100]. The authors concluded that this research area still needs an intensive 

investigation in order to ensure the implementation of robust sensor fault detection systems in AAL 

environments in the future.  
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2.2.3. Radio-Frequency solutions for Indoor Localization 

Regarding radio communication protocols, several have been used to provide indoor localization 

services, such as Bluetooth (IEEE 802.15.1), Radio Frequency Identification Devices (RFID), Ultra-

Wideband (UWB) (IEEE 802.15.4a/z), Wi-Fi (IEEE 802.11) and ZigBee (IEEE 802.15.4).  

A. Bluetooth 

Bluetooth, or IEEE 802.15.1, is a strong candidate for indoor localization systems and it is used in 

many studies [101]–[106]. Bluetooth is a standard based on a wireless radio system and it is designed 

for short-range wireless communications. It is mainly oriented to establish wireless connections 

between closely connected devices and is widely used in IoT systems due to its high energy efficiency. 

Bluetooth Low Energy (BLE) provides improved speed, greater coverage range and versatility when 

compared with its older version, Bluetooth Classic. This protocol is best used for localization purposes 

when beacon communication is used. Devices and sensors that use BLE interface can be placed in 

different areas and programmed to send broadcast messages, to be received by listener devices (e.g. 

a mobile device or sensor node used by the patient)[107]. It is then possible to know the approximate 

location of the user based on the received signal strength indicator (RSSI), which is used to estimate 

the distance between the transmitter and receiver device. This technology has been widely used in the 

marketing industry for costumer engagement and proximity marketing at stores, museums and events. 

Commercially available BLE based protocols include iBeacons (by Apple Inc.) and Eddystone (by Google 

Inc.), which are specially designed for proximity detection.  

Solutions based on Bluetooth beacon technology for indoor positioning estimation were 

addressed by Xin-Yu Lin et al. [108], which implemented a mobile-based indoor positioning system 

based on the iBeacon solution. The goal of this research was to help medical staff track the locations 

of their patients inside a hospital. To evaluate this approach, the beacons, with transmitting signals 

ranging about 30 meters, were placed at the ceiling of four hallways and two rooms of an experimental 

test-bed environment. A mobile application was used by the patient to collect the signals from the 

beacons, based on RSSI values. The authors claim to achieve an accuracy of 97.22% on classifying the 

location of the patient.  

The study presented in [101] also used Bluetooth beacon technology for ADL recognition. The 

beacons were placed in each room (e.g., bedroom, kitchen, and bathroom) of an inhabited home and 

served mainly as an indicator of the user’s presence in a room. The receiver device consisted of a 

smartphone using a RSSI-based algorithm for estimating location context, based on the closest 

proximity of the patient’s smartphone to a Bluetooth’s beacon.  

This technology does not provide an accurate and precise location of the user and it is mostly used 

for context aware proximity services, which is satisfactory for AAL environments.  
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B. Radio Frequency Identification Devices (RFID) 

The use of RFID is also an alternate and great solution to monitor in-house daily activities that 

require proximity to certain appliances and furniture, as presented in the literature [109]–[112]. This 

protocol is based on electronic tags (RFID tags) that exchange data through radio waves to RFID 

readers. These tags are made up of an antenna and an integrated circuit. The first component allows 

the transmission and reception of radio frequency (RF) waves, while the second one is used for 

processing and storing data, as well as for modulating and demodulating radio waves. Considering the 

detection range and power source, there are three types of RFID systems: Active, Passive and Semi-

Passive [85]. Active RFID tags need an internal battery source and can operate at a range of hundreds 

of meters from the RFID reader. They work in the Ultra High Frequency (UHF) and Microwave 

frequency range and are mostly used for localization and tracking of objects [113]. Passive RFID tags 

have no internal energy source (current is induced on the antenna by the RFID reader) and have a 

limited range between 10 cm to a couple of meters. They can operate in the Low, High, UHF and 

Microwave frequency range and, despite not being good for indoor localization systems, due to its 

limited range, they can be used to monitor the usage of certain appliances at home. Semi-passive RFID 

tags are like active tags because they have their own energy source, which is not used when 

communicating with the reader, like with semi-passive tags. The battery is only used to power up the 

microchip, which helps to increase the amount of energy reflected from the RFID reader to the RFID 

tag, thus allowing a higher read range than normal passive RFID tags.  

There are two ways in which RFID systems can be used for indoor location [111]: the RFID tag 

acting as a target and carried by the patient is sensed by RFID readers distributed in specific areas of 

the house, or, the RFID reader is attached to the patient and senses different RFID tags that are placed 

in specific places of the house. A more practical case regarding the use of RFID technology applied to 

AAL environments is the project HABITAT (Home Assistance Based on the Internet of Things for the 

Autonomy of Everybody) [114], whose main objective was to monitor and assist elderly in their daily 

life activities. The developed system was based on an RFID system for indoor localization. Multiple 

active tags were worn by the patient and two or more RFID readers were strategically placed on the 

walls. The system showed a good estimation of the user’s location, presenting an average error of 

about 18 cm.  

C. Ultra-Wideband (UWB) 

Ultra-Wideband (UWB) is a radio technology that offers the highest accuracy and precision for 

indoor localization systems [13], [14], and has been widely used in the literature [115]–[117]. It is based 

on the transmission of short pulses across the wide spectrum frequency with a period of less than 1 

nanosecond (ns) and over a high bandwidth (500MHz) [113]. It can track the location of individuals 

with up to 10 cm of accuracy and it is a low power solution. A UWB system is composed of UWB anchors 
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placed at fixed locations in the environment, and an UWB tag, which will be used by the person or 

object we want to track. Its different signal type and radio spectrum makes UWB immune to 

interference from other signals, which helps this technology achieve its precision and accuracy in 

indoor localization systems. The UWB measures its position using Time of Flight (ToF), which is the 

measurement of the time that a radio wave takes to travel between the tag and the anchor. At least 

three UWB anchors are needed to calculate the position of the tag using the trilateration method. 

Being a technology with strong growth in the market, it has increasingly become a low-cost 

solution, achieving better ratings than the common Wi-Fi, BLE and RFID technologies, in terms of price 

and accuracy ratio.  

Compared to BLE technology, which has an accuracy of 2-5 meters, UWB can reach a much more 

accurate positioning of 10-30 cm, which is ideal for classifying specific tasks being performed in a room 

when considering ADL recognition. This major difference is related with the way these protocols work: 

UWB measures the position through ToF, and not through signal strength, as BLE does.  

Wi-Fi positioning systems do not surpass the accuracy and effectiveness of UWB, and they are not 

as accurate as they offer an accuracy of around 5-15 meters. 

When considering real-time positioning with active RFID, this technology can only reach 3 meters 

of accuracy and has a failure rate around 5% that can go up to 20%, making UWB a more advantageous 

solution with better performance. 

The only technologies that surpass UWB in terms of accuracy are the light-based, such as LIDAR (1 

cm accuracy) and camera (1 mm accuracy). However, these solutions can pose relatively higher costs. 

Camera-based positioning based on visual light positioning (VLP), and LIDAR are not scalable as the 

UWB [118]. Table 2.4 summarizes the different indoor localizations in terms of accuracy, scalability, 

real-time capability, and their suitability to be used in indoor environments. 

TABLE 2.4.  Comparison of the different indoor localization technologies 

 BLE Wi-Fi RFID GPS LIDAR UWB Camera 

Accuracy 

Scalability 

Real-time 

Indoor 
Environment 

5 m 5 – 15 m 
 

3 m 30 cm – 5 m 1 cm 10 – 30 cm 

 

 

 

 

1 mm 
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2.3. Indoor Environmental Quality Monitoring 

Monitoring human physiological status is the most important factor to consider when creating an AAL 

system, as it helps diagnosing human health conditions and prevent possible at-risk situations. 

However, environmental conditions also play a vital role on the population’s health and well-being and 

can be remotely monitored in real-time to prevent dangerous and adverse situations, namely 

associated with poor air quality. Indoor Environmental Quality (IEQ) is an indicator of the general 

quality conditions of indoor environments that may have an impact on human health. The IEQ indicator 

is composed of multiple sub-domains [119], including air quality, lighting quality, noise levels, thermal 

comfort, among others. This section aims to address the most important IEQ factors and how their 

monitoring and control can be achieved. 

2.3.1. Indoor Air Quality 

Air pollution is one of the greatest risks for human health. It can potentially cause numerous 

respiratory problems such as asthma, chronic obstructive pulmonary disease (COPD), allergies, and in 

a more extreme case, lung cancer. While most people are aware that outdoor air pollution has a major 

impact on their health, few have the idea that indoor pollution can be far more harmful. According to 

the United States Environmental Protection Agency (EPA) [120], indoor pollution levels can be 2 to 5 

times higher than at outdoor environments. IAQ monitoring systems are essential in every smart home 

and AAL environment since the population usually spends approximately 90% of their time inside 

buildings. 

Particulate matter (PM), ozone (O3), sulphur dioxide (SO2), nitrogen oxides (NOx) and carbon 

monoxide (CO) are the most common air pollutants present in urban areas and can either be formed 

by both outdoor and indoor sources of pollution [121]. According to [122], the air contaminants that 

are most linked to asthma-related hospital emergencies comprise PM10, NO2 and O3. Additionally, 

outdoor air pollutants greatly affect indoor environments, since the air exchange between these two 

environments is constantly done through mechanical ventilation and natural ventilation [123]. 

However, most pollutants created by indoor sources have a greater impact on indoor air conditions. 

These pollutants usually come from combustion sources, cleaning products, air conditioners without 

proper maintenance, smoke, cooking oils, building materials and many other indoor sources. The 

acceptable limits of concentration for some of these IAQ contaminants are presented in Table 2.5. 
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TABLE 2.5.  Maximum recommended concentrations for specific IAQ contaminants [124], 
[125] 

Parameter Averaging Time Limit for 
acceptable IAQ Unit 

Particulate Matter 1 
 24 hours  50  μg/m3  

Volatile Organic Compound - 0.5 mg/m3 

Carbon Dioxide - 1000 ppm 

Ozone 1 8 hours 120 μg/m3 

Nitrogen Dioxide 1 1 hour 200 μg/m3 

Carbon Monoxide 
15 minutes 100 

mg/m3 1 hour 35 

8 hours 10 
1 Associated with the triggering of respiratory distress [122]. 

Apart from air pollutants, other factors, such as indoor temperature and relative humidity, need 

to be considered regarding asthma distress prevention and well-being. A temperature between 18-

24°C and a relative humidity between 40%-60% is considered the ideal for indoor environments [126], 

as it minimizes most adverse health effects. Values of relative humidity above 60% will turn the air 

harder to breathe – besides narrowing and tighten the airways, humidity also makes the air stagnant 

and traps pollutants and allergens, which can help trigger asthma attacks [127]. 

Different IAQ monitoring systems have been proposed in the literature, along with different 

distributed sensing solutions. Considering the adoption of primary-prevention strategies to help 

avoiding the triggering of potential asthma attacks and COPD, the authors in [128] developed a 

distributed smart sensing network for IAQ assessment. Gas sensing units based on semiconductor 

heated sensors and electrochemical cells were used to measure gas concentration, and an additional 

channel was implemented to measure temperature and relative humidity. The system could estimate 

the air quality index of the indoor environment based on the measured gas concentration. A 

smartphone application was developed to notify the user of possible asthma and COPD attacks, based 

on previously stored threshold values. However, strategies to improve indoor air conditions rely on 

user actions (e.g., manually opening the window to allow air flow and displacement of indoor 

pollutants), which can be a limitation for patients with low mobility.  
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Automatic adjustment of IAQ based on the use of actuators (e.g., air conditioner and mechanical 

ventilation units) is one of the great benefits of home automation systems. Following this strategy, 

Salamone et al. [129] implemented a smart object that helped improve the overall air quality by 

automatically controlling the air exchange system. However, the air quality evaluation was solely based 

on the measurement of concentrations of CO2.  

Considering the monitoring of a wider range of air pollutants, the authors in [130] developed an 

embedded monitoring system to measure air quality parameters such as temperature, humidity, as 

well as CO and ozone. The authors monitored each node’s current consumption in real-time and made 

a notification alert mechanism for when measured values of IAQ were considered unsafe. Based on a 

WSN, the study in [131] proposes an air quality assessment system that could simultaneously obtain 

CO2, CO, Ozone and volatile organic compounds (VOC), as well as temperature and relative humidity, 

from different locations. The calibration of the gas sensing units was done by comparing the data from 

the sensors with a professional air quality measurement system. Similarly, Jung Kim et al. [132] 

developed a gas concentration monitoring system for detecting a wider range of air pollutants - Ozone, 

CO, NO2, SO2, VOC and CO2, and particulate matter (PM). Several aspects were considered, such as 

the optimal number of required sensor nodes and their correct placement in the environment 

according to the type of pollution sources.  

2.3.2. Indoor Lighting Quality and the Impact of Noise in Health 

Poor air condition does not only affect individuals with respiratory illnesses. Common symptoms that 

are often linked to poor air quality for most people include headaches, fatigue, shortness of breath, 

coughing and dizziness [120]. However, these are not necessarily caused by poor air quality. Indoor 

lighting quality (ILQ) and indoor noise levels also have a great impact on human health, and thus, may 

be the cause of the manifestation of such symptoms.  

ILQ plays an important role in an individual's visual ability and has several positive biological 

effects. The benefits of adapting both light levels and color temperature throughout the day in indoor 

environments are numerous. The recommended light levels [133] for each area of the building and for 

each type of working activity must be considered. Adequate lighting levels during the day and night 

can regulate circadian sleep-wake rhythms and vastly improve an individual’s health, productivity, and 

comfort. Circadian lighting is a concept that is becoming often present in various sectors, from 

healthcare to corporate [134]. It follows the circadian rhythm, a 24-hour internal clock that cycles 

between sleepiness and alertness at regular intervals. Lightness and darkness have a direct impact on 

this sleep-wake rhythm. The eyes send signals to an area of the brain called hypothalamus, that will 

report if it is night-time or daytime. The hypothalamus, in turn, controls the amount of melatonin that 

needs to be released, associating sleepiness with darkness and alertness with lightness [135]. Given 
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that most of the population does not have access to natural light in their working environments and 

at home, they are often exposed to non-natural electric light. Electric light is usually kept mostly within 

certain wavelengths of blue light, which can lead to negative impacts on melatonin production. Smart 

lighting systems have been recently helping to address these problems [136] and can be provided by 

some commercial products such as Yeelight LED Smart Bulb [137] and Philips Hue [138]. Capable of 

changing its light temperature color and intensity, these systems can be used to support human health 

and regulate sleep-wake rhythms. 

Another important factor that has a remarkable impact on human health is the daily exposure to 

high levels of noise. With population growth, increased vehicular traffic and industrial activities, noise 

is increasingly present in the daily lives of millions of people. Although the notion of noise may vary 

from individual to individual, depending on their subjectivity or auditory sensitivity, prolonged 

exposure to sounds above 80 dBA may cause permanent damage to the auditory system. Guideline 

values of noise for specific environments, such as the recommended by the World Health Organization 

[139], must be followed in order to minimize the underlying critical effects on human health. Problems 

such as sleep disturbances, stress, difficulty in communication between people and loss of 

concentration are among the most frequent effects caused by this physical agent [140], [141]. 

Therefore, monitoring noise levels and notifying the individual for when values exceed an acceptable 

threshold for a certain period is an equally important factor in preventing hearing damage and helps 

to ensure productivity, well-being, and human health. 

2.4. The role of Artificial Intelligence on Smart Tailored Environments 

Activity recognition, especially ADL, and fall detection is at the core of every AAL system since it 

provides information about cognitive health progression or degradation. Such health assessment is 

critical for the doctors or family to decide whether the patient should move to an assisted living 

environment with constant supervision or to other care facilities. As previously mentioned, monitoring 

of the user activity and behavior is obtained through indoor localization technologies that can be 

expressed by several sensors distributed through the house, or by other wireless systems based on 

radio frequency communication. Moreover, the monitoring of other human activities and fall 

occurrences can be achieved by collecting acceleration and rotation data of the human body. 

Information from sensors, which is often considered high-level, cannot be obtained by a direct 

observation of their raw data. It must be processed by suitable algorithms usually based on machine 

learning, signal processing and data analysis [142].  

The application of such algorithms depends on the chosen activity recognition approach. Visual 

based indoor localization, such as camera/video recording, requires computer vision techniques to 

recognize activities from several visual observations on the user’s actions, gait patterns, as well as 
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environmental changes [143]. With the usage of sensor network technologies, for instance, data must 

be analyzed through datamining and machine learning algorithms applied to build activity models that 

later will be used as the basis of ADL recognition. 

This section addresses studies reported in the literature that support the system presented in this 

thesis for the creation of a smart tailored environment, namely ADL classification, human behavior 

monitoring and fall detection, stress level monitoring and estimation of human thermal comfort levels. 

2.4.1. Machine Learning for ADL Recognition and Behavior Monitoring 

There are two categories in machine learning algorithms used for activity recognition, where the 

differentiation between the two lies on how the user's activities and their ADL profile are represented 

and modeled. The first category refers to the generative approach, which consists of creating a 

statistical model of the joint probability distribution of samples and activity labels. The most typical 

generative models include the Hidden Markov Models (HMM) and Bayesian networks. The second 

approach is a more heuristic approach and is based on creating a model of the conditional probability 

of the activity labels, given the samples [144], [145].  

Discriminative models include Support Vector Machines (SVM), which present high accuracy and 

good performance when a limited dataset is considered, conditional random fields (CRF), k-nearest 

neighbor algorithms and artificial neural networks (ANN), with the most prominent ones being 

recurrent neural networks (RNNs). Several datasets of smart home projects are publicly available and 

can be used for testing the most suitable machine learning algorithms for ADL. In most of these 

datasets, human activities are perceived by a sequence of state-changes expressed by the activation 

of several sensors (e.g., infrared motion sensors, pressure sensors and so on) installed on every day’s 

used objects. Some datasets include CASAS dataset [146], MavHome [147], ARAS [148], MIT Activity 

Dataset (Tapia) [149] and Kasteren [150], among others.  

The CASAS project [98] created an activity recognition software that provides real-time activity 

labeling of sensor events (e.g. cooking, eat, enter home, sleep, work, etc.), based on a support vector 

machine (SVM). The analyzed data was based on the sequence of sensor events (e.g., “ON” and “OFF”) 

of several motion sensors distributed throughout the house. Other machine learning algorithms, 

including hidden Markov models and naïve Bayes classifiers, were tested - however, the SVM achieved 

the best performance. Similarly, Fleury et al. [93] made ADL classification based on SVM as well. 

Bayesian classification and neural network methods were not suitable given the small number of 

collected samples. The authors in [43] used HMM to recognize a behavioral patterns expressed by 

state sequences. Activity recognition was based on the user’s location, which was obtained by an 

impulse radio UWB positioning system. Yegang Du et al. [151] developed a three-stage framework for 

recognition of human activities, able to predict the next probable activity. This recognition was based 
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on the manipulation of daily used objects (e.g., chair, bed, sofa, toothbrush, knife, etc.). The detection 

of its usage was done by attaching passive RFID tags on the objects. For human activity prediction, time 

sequences were considered, as certain activities tend to happen right next to a previous activity (e.g., 

watching TV after having dinner). Long short-term memory (LSTM), a sub-set of Recurrent neural 

networks, was used for activity prediction, as well as for object-usage. The authors achieved a 

recognition precision of 85.0% and prediction accuracy of 78.3%. Their solution showed a stronger 

performance and accuracy than the classical Naïve Bayes method [151].  

The authors in [97] evaluated different methods of classifying ADL. The classified activities 

included going to toilet, taking a shower, going to bed, eating, drinking, etc. SVM, random forest, HMM 

and fisher kernel learning (FKL) classifiers were tested on three data sets with different types of sensors 

at each different location. The first dataset was from Kasteren [150]. It described the daily activities 

performed by a single person in his apartment. All the used sensors (including motion, pressure and 

reed switches) gave binary outputs. The hybrid generative and discriminative method, FKL, presented 

a better performance for the three datasets, when compared with HMM, SVM and random forest 

algorithms.  

Considering ADL recognition systems based on motion, with data extracted by accelerometers 

and other mechanical-based sensors, Chernbumroong et al. [152] were able to detect nine different 

ADL of an elderly person based on the information provided by wrist-worn multi-sensors from a sports 

watch, such as a temperature sensor, accelerometer and altimeter. When compared with neural 

networks, SVM proved to be the best algorithm for the classification of activities, with an overall 

accuracy of 90.23%. Future work [153] included the addition of four more sensors – heart rate monitor, 

light sensor, gyroscope and barometer – to improve the activity classification accuracy. By using the 

SVM classification model, which was still considered the best classification algorithm for their dataset, 

the authors achieved approximately 97.20% of accuracy when classifying activities.  

Davis et al. [154] evaluated three machine learning algorithms – SVM, HMM and ANN – on a 

dataset based on information collected with an accelerometer and gyroscope of a smartphone. SVM 

and ANN classifiers achieved a good performance (97.6% and 91.4%, respectively), but the 

combination of both SVM and HMM methods vastly improved detection accuracies to 99.7%. Other 

classifiers, such as Decision Tree algorithms and its variants, have also been used for human activity 

recognition systems [155]–[157].  

These algorithms present good performance results when detecting human activities based on 

acceleration patterns, as previously seen. Yet, it is necessary to pre-process the data involving the 

feature extraction of accelerometer and gyroscope raw information, which is typically the acceleration 

in m/s2 and rotation in degrees for the X, Y and Z-axis. This can be time-consuming and adds more 

complexity to the ML algorithm. 
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2.4.2. Machine Learning for Fall Detection 

The use of Deep Learning models, such as LSTM, to classify both ADL and fall events, has been 

addressed over these past years. LSTMs have been trained with tri-axial accelerometer data to detect 

falls, having achieved good results [158]. Multi-sensor data based on accelerometer and gyroscope for 

LSTM training was also proposed in [159] and [160]. The LSTM algorithm is good at automatically 

learning the features from raw data [161]. This makes it unnecessary to perform feature extraction of 

accelerometer and gyroscope raw values, which helps to reduce the complexity and processing power 

required by the implemented algorithm. Moreover, LSTMs can process entire sequences of data, learn 

long-term dependencies, and extract and learn time-series patterns in a more effective way than 

Convolutional Neural Networks (CNN) and other conventional Deep Learning algorithms.  

Other neural network architectures such as temporal convolutional networks (TCN) and gate 

recurrent units (GRU) produce similar results to LSTM. However, LSTM can still have fewer 

computational complexity than these other two models [162]. 

Sarabia-Jácome et al. [163] presented an innovative intelligent system to detect falls based on a 

3-layer fog-cloud computing architecture and deep learning models. The proposed system employed 

a wearable 3-axis accelerometer and a smart IoT gateway as a fog node to remotely collect the 

patient’s monitoring data. The authors deployed two deep learning models based on Recurrent Neural 

Networks (RNN) (LSTM/GRU), having achieved highly efficient results of 98.75% accuracy. The use of 

a smart gateway as a fog device showed significant advantages over a smartphone choice and was 

appropriate for seamlessly covering indoor environments, where undetected falls mostly occur. Liang 

Ma et al. [164] proposed a solution to the problem of detecting falls in private locations for the elderly 

by using impulse-radio UWB monostatic radar. The proposed method combined CNN and LSTM to 

extract spatiotemporal features for fall detection. The proposed method was tested on six different 

activities and achieved a sensitivity of 95% and a specificity of 92.6% at a range of 8 meters.   

2.4.3. Machine Learning for the Estimation of Human Thermal Comfort based on Heart Rate 

Variability Parameters 

Besides having a strong presence in ADL recognition, machine learning techniques are also applied 

to extract relevant information about physiological conditions provided by wearable biomedical 

sensors. Considering the impact of different indoor thermal and air humidity conditions on a subject’s  

well-being, several studies have been conducted in order to investigate the influence of different 

environmental conditions on human health, namely in terms of thermal comfort, through the analysis 

of cardiac activity and HRV [165]–[168].  

A small number of recent studies have been focusing on using machine learning (ML) approaches 

for estimating a person’s comfort based on physiological and environmental parameters.  
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The authors in [167] tested the performance of ten ML classification algorithms for predicting 

human thermal comfort based on HRV and a rating scale of self-reported thermal sensation. Some of 

the used algorithms included Logistic Regression (LR), k-Nearest Neighbors (KNN), Decision Trees (DT), 

Multilayer Perceptron (MLP) neural networks and Support Vector Machines (SVM) - the latter one 

being the classifier that provided higher accuracy. Similarly, Morresi et al. [168] relied on the use of 

SVM, Random Forest (RF) and Extra Tree Classifiers (ETC) to classify between warm-induced and cold-

induced discomfort based on HRV and self-reported thermal sensation, having reached successful 

results. 
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2.4.4. Machine Learning for Stress Detection 

In addition to HRV analysis, mental or emotional strain can be estimated by applying machine learning 

methods to physiological data. Many of the data used in these algorithms are based on features 

obtained from an ECG signal, EEG, GSR or even HRV parameters, depending on the final application of 

the problem. For emotion classification, for instance, physiological parameters extracted from an ECG 

or PPG, GSR or EEG signal are typically used [169]–[171]. The utilization of machine learning for the 

development of real-time mental stress detection systems has become widespread in recent years. A 

comparison of the best machine learning techniques to detect psychophysiological stress was studied 

by Smets et al. [172], based on physiological responses obtained from ECG, GSR, RR and skin 

temperature in a controlled environment.  In [173], support vector machines (SVM) and k-nearest 

neighbours (kNN) algorithms were used to make a binary classification of stressed and relaxed states 

based on ECG, RR, GSR and BP features. The individualized model created by the authors achieved an 

accuracy of 95.8%. Other studies have considered the use of Fuzzy Logic to make the same binary 

classification based on GSR, HR and respiratory data [174]. With the addition of a wider range of 

physiological features, such as EMG, ECG, GSR and RR, the authors in [175] used MLP, Naïve Bayes, RF, 

kStar and DT to classify three different levels of stress – low, medium and high. The highest accuracy 

score was achieved for the k-star algorithm, with the authors claiming having reached very good 

classification results (>95%) using the ECG signal alone. In [176] the quantification of three different 

levels of mental stress were made using EEG. An SVM algorithm combined with Error Correction Code 

was used for the classification problem, in which an accuracy of 94.8% was achieved. Mental stress can 

be monitored using the patterns of ECG signals with the help of deep learning methods, as proposed 

by Hwang et al. [177]. Using HRV parameters has a standard for stress evaluation, the authors achieved 

an accuracy as high as 87,4% in recognizing stress conditions. Since HRV is used to measure the activity 

of the autonomous nervous system, the HRV analysis allows the identification of mental stress. In this 

way, machine learning and deep learning methods have used HRV data for stress recognition and 

prediction. One example is the study by Giannakakis et al. [178], who used machine learning 

techniques to identify a sense of stress using HRV features. The study involved exposure to different 

stressors and a collection of subjective feedback from each participant upon induced stress scenarios. 

The authors achieved a good correlation between the sense of stress and the HRV parameters 

considered. Their stress recognition system achieved an accuracy above 70% for the RF and SVM 

algorithms when using only HRV parameters. Considering an unsupervised approach, Oskooei et al. 

[179] used deep learning algorithms for an unsupervised detection of mental stress using short-term 

HRV data. Convolutional autoencoders [180] seemed to have a consistent and successful stratification 

of stressed versus not stressed samples, which were verified by HRV parameters, such as RMSSD, mean 

HR and the ratio between LF and HF components. 
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Table 2.6 summarizes machine learning classifiers that have been used in the literature for ADL 

recognition. 

TABLE 2.6. List of machine learning classifiers used in the literature 

Machine Learning Classifiers Research Topic Reviewed Works  

Support Vector Machine (SVM)  

ADL and Fall Detection [93], [97], [98], [152]–[154] 

Thermal Comfort [166], [167] 

Stress Detection [172], [175], [177] 

Decision Tree / Random Forest  

ADL and Fall Detection [97], [154]-[156] 

Thermal Comfort [166],[167] 

Stress Detection [174], [177], [179] 

Neural Networks 
(LSTM, MLP, etc.) 

ADL and Fall Detection [150], [153], [157]-[159], 
[162], [163] 

Thermal Comfort [166] 

Stress Detection [174], [176], [178] 

Hidden Markov Models (HMM) ADL and Fall Detection [43], [97], [98], [154] 

Naïve Bayes  
ADL [98], [151] 

Stress Detection [174] 
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2.5. The Importance of Exergames and Immersive Environments for Physical 

and Cognitive Stimulation 

With the increase of life expectancy and retirement age over these recent years, the risk of mental 

illnesses, particularly dementia and strokes, has been a raising risk for most of the elderly population. 

Not only do the risks of mental illness arise at this age, but there is also an emergence of negative 

events, such as the loss of a loved one, lack of close family ties, loneliness, social isolation and decline 

of mobility and physical exercise. These issues lead to an urgent need to provide healthcare systems 

that can contribute to medical rehabilitation and enhance social well-being among the elderly. The 

exergames, which combine physical exercise with digital gaming, have proved to bring great benefits 

to the participants’ physical, cognitive and psychological well-being [181], [182]. Most importantly, 

elderly can use these systems in their own home, where they feel emotionally more comfortable and 

where the rehabilitation process can be more efficient. Many studies have proved the great benefits 

of using exergames in improving participants' physical and psychological health.  

Besides revealing their importance in ambient assisted living deployments and under free-living 

conditions, wearable biomedical sensors have allowed to study the contributions of physiotherapy 

sessions and evaluate physical and cognitive outcomes during the rehabilitation process. Moreover, it 

allows the study of VR serious games direct contributions on the rehabilitation process and health 

conditions of the patient. In this context, exergaming has been showing promising results regarding 

player performance and engagement when practicing physical activity. Kafri et al.  [183] showed that 

energy expenditure (EE) and exercise intensity from post-stroke participants after playing upper-limb 

and mobility Kinect and Wii-based exergames was considered of moderate intensity, regarding 

inherent clinical implications, according to the three levels of exercise intensity considered: low, 

moderate and vigorous. Besides EE, the percentage of predicted maximal HR rate of perceived exertion 

(RPE) and respiratory exchange ratio (RER) were used to characterize different games.  

Jinhui Li et al. [181] conducted a literature research on exergame studies and concluded that the 

interaction of elderly population with these type of video games have promising results regarding the 

enhancement of social well-being, including the increase of positive attitudes and social connection, 

and also reduction of loneliness.  
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Munoz et al. [184] focused on finding how physiological parameters were regulated in elderly 

users during exergaming sessions of different difficulties and audio-visual stimuli. This study is based 

on the analysis of physiological data obtained through wearable sensors that acquired 

electrocardiograms and electrodermal activity signals. HR and HRV parameters were extracted, as well 

as maximum oxygen uptake (VO2max), Energy Expenditure (EE), Metabolic Equivalents (METs) and 

Galvanic Skin Response (GSR). The exergame, which was an adaptation of the famous two-dimensional 

Pong game, mostly relied on lower limbs movements, as the player needed to move horizontally to 

control a virtual paddle projected on the floor. The experimental procedure was based in a control and 

exergaming group, and the obtained results suggest that parasympathetic activity based on HRV 

analysis is significantly different between the control and exergaming group rather than between 

different difficulty levels (easy, medium, and hard).  

Chan et al. [185] studied the influence of virtual reality (VR) technologies in cognitive functions of 

older adults and concluded that VR based training programs significantly improved repetition and 

memory retention compared to usual programs.  

VR training has shown significant improvements in strength and balance in elderly adults [186]–

[191], which has been evidenced by objective measurements of postural components [192]. A recent 

study also showed the ability of immersive VR environments to improve postural stability of the elderly 

as well as increasing their levels of engagement during motor rehabilitation exercising [193]. The 

effectiveness of applying an exercise routine based on VR exergaming in the elderly population has 

been proven by several studies, with similar or even superior effects of exergames on cognitive 

functions, when compared to traditional types of exercises [194]. Common physiological measures 

used in these studies for monitoring physical performance and exercise intensity include the 

monitoring of heart rate, assessment of the rating of perceived exertion (RPE), heart rate reserve 

(%HRR) and average percentage of maximum heart rate (%HRmax).  

With the aim of exploring how the HRV indices and the ANS response are modelled and improved 

through exergaming, Eggenberger et al. [195] conducted a 6-month training session composed of 

traditional cognitive-motor exercises and exergames for healthy older adults. The authors not only 

discovered a substantial correlation between HRV indices and cognitive executive functions, but also 

found great improvements in global and parasympathetic autonomic nervous system responses in the 

elderly when physical training was associated with exergaming.  
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With a special focus on providing a cost-effective way to support mental wellbeing and physical 

and mental rehabilitation for elderly at home, E. Vogiatzaki and A. Krukowski [196] proposed an 

automated home system that combines augmented reality and virtual reality gaming, multi-modal 

user interfaces and innovative embedded micro-sensor devices combined with a Personal Health 

Report System (PHR). This system was intended to support the delivery of individual and patient-

centered electronic health services at home, hospitals and other types of environments, and its 

usability was confirmed by technical validation tests.  

Not particularly focused on physical rehabilitation or training, the creation of immersive 

environments has also been addressed by several AAL projects, some of which have been supported 

by the European Active Assisted Living (AAL) program [197]. SENSE-GARDEN [198], [199] is a project 

based on the development of immersive environments which provides different stimuli for basic 

senses, such as balance, smell, touch, hearing and sight. These environments integrate music, films, 

pictures and scents, and are specifically tailored for the individual, as they automatically adapt to their 

personal memories and preferences. All this was achieved by the design of a virtual space, composed 

by: a reality wall with projection of landscape videos with familiar scenarios; an augmented reality 

game to improve balance and physical activity stimulation; an interactive touchscreen showing family 

photographs; a stationary bicycle placed in front of a film; sound speakers playing background 

soundscapes and familiar music and a dispensary system releasing familiar scents [198].  

 
FIGURE 2.8. Example of immersive environments created by the SENSE-GARDEN project [198], [199]. 
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CHAPTER 3 

Smart Tailored Environment 

The system follows a healthcare IoT framework and is composed of a wireless sensor network that 

enables physiological parameters assessment, environmental quality monitoring and indoor 

localization and human activity recognition. In this chapter, a description of the developed system’ 

hardware and software components is made. 

3.1. Physiological Parameters Sensor Nodes 

3.1.1. Ballistocardiography Sensing Node 

The first biomedical sensor node for cardiac and respiratory activity estimation is based on an 

unobtrusive sensing unit expressed by a BCG sensor. The selected BCG system requires mechanical 

connection between the subject’s body and the sensor. Thus, to facilitate its use, without causing any 

discomfort to the user, the sensor is embedded on the seat of an office chair. The BCG sensing unit is 

expressed by a lightweight and flexible electromechanical film (EMFi) sensor – EMFIT L-3030 with 29 x 

30 cm dimensions (Figure 3.1). It is a flexible and thin polypropylene film with electrically conductive 

layers that converts mechanical energy to an electrical signal. These layers are separated by air voids 

that are 10-100 µm wide and 3 µm high [37]. When pressure is applied on the sensor, the thickness of 

the air voids changes, and electrical charge movements occur in the void interface, therefore 

generating a voltage. This sensor presents a capacitance of 45 pF/cm2 at 1kHz, that was measured 

with a B&K precision bench LCR meter, model 891. Aside from the external noise that might be caused 

by movements in the chair, the mechanical activity is generated by the repetitive micro vibrations of 

FIGURE 3.1. Ballistocardiography sensor, EMFIT L-3030 (left image) and its placement on a chair, 
together with the signal conditioning circuit (right image) 

 



 

the user’s whole-body associated with cardiac contraction and ejection of blood in the vessels, as well 

as with the respiratory activity. 

The BCG sensor is connected to a signal conditioning circuit and its output is acquired by an ESP32 

microcontroller. The conditioning circuit includes a filtering block with a 2nd order Butterworth low-

pass filter (cut-off frequency fc= 28Hz) that uses a TLV2764 quad rail-to-rail operational amplifier. In 

order to have a higher precision ADC, an ADS1115 device with 16-bit ADC resolution and an internal 

programmable gain amplifier (PGA) was connected to the ESP32 over I2C, as depicted in Figure. 3.2. 

The signal is acquired at 1kHz sampling rate by the ESP32 and is sent through the Bluetooth 

communication protocol in real-time to the gateway node for data processing and analysis. 

 
FIGURE 3.2. BCG acquisition using an EMFi sensor, a 2nd order low pass filter with a TLV2764 
operational amplifier and a data acquisition board expressed by an ESP32. 

A. BCG Signal Processing 

Although BCG poses as more convenient and comfortable method for monitoring vital signals, its 

signal analysis is a challenging process. The signals collected from the BCG sensor have low signal-to-

noise ratio (SNR), especially due to the respiration activity, some muscle activities or even due to 

electrical interference. To improve the SNR of the ballistographic signal, a low pass active filter (LPF) 

was employed, as previously mentioned. The signal, that is wirelessly acquired by the gateway node, 

is observed in Figure 3.3, with blue color. These signals were obtained from a young and healthy adult 

while seated on the chair, performing regular office work while executing light hand movements (e.g., 

working on the PC or writing). This information is processed by a computational unit with more 

processing power, that in this case is represented by the smart gateway. For heart rate and respiratory 

rate estimations, additional digital filtering techniques were implemented using SciPy signal processing 

library for Python programming language. A high pass filter with cut-off frequency of 30 Hz was applied 

to remove the baseline wander of the signal, induced by respiratory activity (Figure 3.3). To obtain the 

heart rate estimation and to extract the time interval between each consecutive heartbeat (J-J 

intervals), a peak detection algorithm was implemented. The number of peaks and their location in the 

time axis was obtained. Time differences between peak occurrences were also calculated for HRV 
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analysis in the time-domain and frequency domain. In Figure 3.3, an example of the acquired BCG 

signal for a 60s-window (top) and a 15s-time window (bottom) is presented, where the IJK wave 

complex is depicted. 

 

 

FIGURE 3.3. Ballistocardiography signal associated with the seat of a chair before (blue) and after 
(orange) removal of the respiratory signal component. 

This type of signal, with lower interference and higher SNR, is regularly obtained in the whole 

experiment since the subjects are seated in a relaxed position while working on a PC, which induces 

reduced movement artifacts. For estimating the respiration signal (Resp), a method based on Discrete 

Wavelet Transform (DWT) was used. This method consists on the implementation of a digital filter 

bank of pairs of digital high-pass (HPF) and LPF filters that follow a tree structure [200]. The BCG signal 

is decomposed at each scale (e.g., j scale) into detail coefficients (𝑑!) at the HPF output, and into 

approximation coefficients (𝑎!) at the LPF output. The values of these coefficients can be expressed 

by the following inner products [201]: 

 

𝑑!(𝑘) = 	 (𝑥(𝑙), 𝜓!,#(𝑙)- (1) 
  

 
𝑎!(𝑘) = 	 (𝑥(𝑙), 𝜙!,#(𝑙)- (2) 

 
where 	𝜓!,#(𝑙) and 𝜙!,#(𝑘) represent the scaled and translated versions of the basis functions 
associated with the HPF and LPF impulse responses: 
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A study regarding the optimal mother wavelet type and decomposition levels (j=1 to 4) for DWT 

that allowed an accurate estimation of the respiratory activity was conducted. A comparison of 

different orders of Daubechies mother wavelets (e.g., Daubechies db1, db2, db3, db4) revealed that 

accurate estimation of respiratory signal was obtained with orders higher than 2, where optimal results 

were achieved with wavelet decomposition based on a 4th order Daubechies mother wavelet (db4). 

Regarding different DWT decomposition levels, graphical representations of the BCG signal and 

respiratory signal using 2, 3 and 4 levels of decomposition (cA2, cA3, cA4) in a 60s-time window are 

presented in Figure 3.4, respectively.  

 
FIGURE 3.4. BCG signal and reconstruction of the respiratory signal based on discrete wavelet 
transform (DWT) with db4 mother wavelet, and comparison of 2nd, 3rd and 4th levels of approximation. 
Signal peak detection marked in red, on the 4th scale approximation. 

For respiratory rate estimation using a signal peak detection procedure, the best results were 

achieved for a 4th wavelet approximation (j=4), as presented in Figure 3.4. The respiratory signals, 

Resp(n), are obtained by combining the products between the decomposition coefficients and the 

basis functions, which are given by the following equation [201]: 

𝑅𝑒𝑠𝑝(𝑛) = 	𝑎&	(𝑛) = 	;𝑎!(𝑘)	𝜙!,#(𝑛)
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The respiratory rate estimation obtained with such methods was validated by counting how many 

times the chest raised for five minutes straight. A percentage error of approximately 4% was obtained 

when comparing the number of peaks of the extracted respiratory signal with calculated peaks using 

the peak detection function. Signal processing based on DWT was implemented offline by using the 

wavelet transform software PyWavelets for Python programming language.  

3.1.2. Photoplethysmography Sensing Node 

A. First Prototype 
The wearable sensor node was designed to enable vital sign’s monitoring and Pulse Rate Variability 

(PRV) analysis, commonly referred to as HRV, based on the PPG technique. The sensor being used 

follows a reflective photoplethysmography architecture, which is based on the measurement of the 

reflected light from the skin induced by volumetric variations of blood volume in the microvascular 

bed. The sensor is connected to an ESP32’s ADC and transmits data at a sample rate of 160 Hz. Its 

internal circuit already includes amplification and analog filters; thus, no extra signal conditioning was 

needed. The ESP32 microcontroller presents both Wi-Fi and Bluetooth (IEEE 802.15.1) wireless 

connectivity capabilities, a 32 bits dual core CPU with a clock frequency up to 240 MHz, 520 kB of RAM 

and 12-bit resolution ADCs. Other than these remarkable features that make this board a strong 

opponent to other common microcontrollers, its power saving strategies is what makes it an ideal 

option to be used in the designed wearable sensor node. Low-power strategies such as the deep-sleep 

mode, as it is going to be addressed, is being considered to improve the node’s autonomy. Figure 3.5 

and 3.6 shows the developed prototype.  

 
FIGURE 3.5. Design of the PPG wearable sensor for HRV measurement 



 

 Other than the PPG sensing part and the wireless microcontroller module, the node includes 

a 4.2V Li-Po battery with 1300 mAh capacity, a battery charger (TP4056), with a 3.3V low-dropout 

(LDO) regulator, since the ESP32 operates at 3.3V, and a switch. This first prototype was designed to 

be comfortably attached in the arm using an adjustable strap and the PPG sensor can either be placed 

in the earlobe or used in a finger. In the future, a ESP32 printed circuit board module will be dispensed 

and the chip itself will be embedded in the board together with other components, so it becomes less 

than half the size of this first version.  

 
FIGURE 3.6. Example of the PPG wearable sensor usage 

The sensor node has three stages of functioning: (A) PPG signal acquisition and calculation of PRV 

parameters, (B) data transmission and (C) deep sleep mode.  

The PPG signal is collected for 5 minutes. During this time, real-time measurements of the time 

interval between two consecutive beats (inter-beat intervals), which are observed through an 

amplitude peak in the ADC that exceeds a pre-defined threshold, are stored. After the timer reaches 5 

minutes, the microcontroller is configured to calculate the HRV parameters in the time-domain. These 

parameters include the average RR interval, average HR, maximum HR, SDNN, RMSSD and NN50.  

After these calculations, the HRV information is transmitted to the gateway node using Wi-Fi with 

the MQTT protocol. Once data is sent, the microcontroller enters in the deep sleep mode. 

 Figure 3.7 presents the current consumption of the designed sensor node measured with the 

Keithley 2000 digital multimeter with the amperemeter function selected, for the three stages.  
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FIGURE 3.7. Current consumption during: A) Acquisition of PPG signal, B) Data transmission, C) Deep 

sleep mode 

For demonstration purposes and calculation of current consumption, both wake up and deep 

sleep periods were configured for a duration of 30 seconds. During stage (A) the node’s current 

consumption was around 67 mA, in (B) it reached 130 mA and on deep sleep node (C) it reached the 

minimum consumption of 10 mA. Considering that the sleep mode will last 30 minutes, if the sensor 

node is to be deployed in an AAL scenario, for instance, the node will have an autonomy of 

approximately 122 hours (5 days). 

B. Second Prototype 
Another wearable prototype for PPG signal acquisition was also developed. This wearable device, a 

much smaller version when compared to the previous one, is expressed by a Seeed Xiao BLE sense 

with 12-bit resolution ADCs, a 32-bit ARM® Cortex™-M4 CPU at 64Mhz, which is suitable for small 

machine learning applications. It also has two onboard sensors, such as a digital microphone and a 6-

axis IMU, which can be applied for movement/activities recognition. This computer platform, which 

also integrates deep sleep mode for power saving strategies, reveals to be a great alternative to the 

commonly used ESP32 and it will be considered in future implementations of sensor nodes. The 

prototype runs the same algorithm for calculating the HRV mentioned in the previous sub-section. 

 
FIGURE 3.8. 2nd Prototype design for the PPG ear-worn sensor node 



 

3.1.3. Electrocardiography Sensing Node 

For the validation of the developed PPG wearable sensor node (1ST prototype), that will be addressed 

in Chapter 4. Section 4.2.4 and for the study presented in Section 4.3, a commercial wearable 

biomedical device characterized by the Shimmer3 ECG unit, was used for ECG signal acquisition. It is a 

compact and small wearable module frequently used in academic and biomedical research [202]. Its 

baseboard is composed by a MSP420 ultra-low power microcontroller, from Texas InstrumentsTM, and 

its communication module relies on a Chipcon CC2420 radio transceiver, compliant with IEEE 802.15.4, 

and a RN42Class 2 Bluetooth module. This platform has proven its effectiveness on collecting 

physiological signals, and is a CE-certified wearable medical device, suitable for ECG Holter monitoring 

[203], [204]. A five-lead ECG monitoring with AgCl electrodes is used and all electrodes are placed on 

the chest, in the positions mapped in Figure 3.9. b). The bipolar limb leads are placed away from the 

heart towards the joint of a specific limb (RA -Right Arm, LA-Left Arm, RL-Right Leg, LL-Left Leg), and 

the unipolar lead is placed in the right side of the sternum (V1), a position that prevents the appearance 

of motion artifacts generally induced by limb movements. The signal is recorded at a sampling 

frequency of 512 samples/s, and it is transmitted to a personal computer in real-time through the 

Bluetooth communication protocol. LabVIEW software is used to configure the Shimmer module and 

collect the ECG data, which is then saved in a local file for later processing. 

 
FIGURE 3.9. a) Shimmer3 ECG unit and b) RA, LA, RL, LL and V1 electrodes placement on the chest 

The ECG signals rely on the use of various digital filters to clean the signal before applying the 

methods for analyzing the HRV. Digital filtering methods consisting of a HPF with cut-off frequency of 

0.5 Hz were applied to remove baseline wander of the ECG signal (Figure 3.10). A peak detection 

algorithm based on the SciPy signal processing tools was implemented to extract temporal position of 

R peaks and thus calculate the R-R interval time series, which are to be used in HRV analysis (Figure 

3.11).  



49 

 
FIGURE 3.10. ECG original and filtered signal (HPF with cut-off frequency of 0.5 Hz) 

 

FIGURE 3.11. Peak detection of the ECG filtered signal 

The HRV analysis is performed in both time-domain and frequency-domain, using the Python 

package HRV-analysis [59].  Additionally, the respiratory rate can also be analysed, since the Shimmer3 

unit includes real-time respiration demodulation from the ECG signal. To extract the respiratory rate 

(breaths per minute), a peak detection algorithm is applied to the signal. 

3.1.4. Galvanic Skin Response Sensing Node 

To measure electrodermal activity (EDA), a biomedical sensor Shimmer3 GSR+, was considered 

[202], [204]. It uses an MSP430 ultra-low power 16-bit microcontroller, from Texas InstrumentsTM, and 

integrates Bluetooth radio for wireless connectivity. The small and compact unit is powered up by a 

450mAh Li-ion battery and it supports a variety of software development tools for data analysis and 

interface development. This unit has two electrodes that can be attached to two fingers from one 

hand, as depicted in Figure 3.12. The GSR signals are acquired at a sampling frequency of 1024 

samples/s and transmitted to a computer through Bluetooth, for later analysis. 
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FIGURE 3.12. Shimmer3 GSR+ unit and the electrodes placement on the hand. Source: [205] 

The acquisition of the EDA signal, also known as GSR, was done for measuring the changes in the 

emotional state of the participants throughout the experimental sessions that will be addressed in 

Chapter 4. Section 4.2 and correlate it with the modulation of sympathetic activity. All GSR signals are 

represented as resistance (kOhms), measured between the two electrodes placed in two fingers. The 

obtained signal represents the electrical conductivity of the skin measured over the entire length of a 

stimulation session. A GSR signal is composed of two components: phasic component and tonic 

component.  

The phasic component represents the rapid changes of the GSR signal and its peaks, known as skin 

conductance response (SCR). It measures the sudden changes of emotional arousal and reflects 

sympathetic nervous system activity. In this way, it is possible to relate these changes with a specific 

stimulus. It can be obtained using a HPF with a cutoff frequency of 0.05Hz.  

The other component is the tonic component. It reflects the slow variations in the GSR, and it is 

more linked to thermoregulation and general arousal. The analysis of such signals was performed in 

Python, using the NeuroKit2 package [206]. An example of the acquired signals is presented in Figure 

3.13. 

 

FIGURE 3.13. Tonic and Phasic component of an EDA signal 
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3.2. Indoor Environmental Parameters 

3.2.1. First Prototype 

Indoor environmental quality (IEQ) is composed of multiple sub-components, in which thermal 

comfort quality and air quality are present [207]. Considering the implementation of an IAQ monitoring 

layer, different air quality sensors have been selected. As presented in the literature, ozone (O3), 

sulphur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO), smoke and particulate matter 

(PM) are the most common air pollutants in urban areas [208]. The system includes a highly selective 

PM sensor that can provide precise measurements of concentration of particles with different 

diameters. The Particulate Matter Sensor SPS30, from Sensirion, was used in this study [209], and the 

particle detection size range includes PM1.0, PM2.5, PM4 and PM10. Its mass concentration resolution is 

1 μg/m3 and it ranges from 1 to 1000 μg/m3. The sensor provides a fully calibrated digital output for 

PM number and mass concentration values and includes UART and I2C interfaces. It has an MCERTS 

specification, which confirms that this sensor can be integrated into applications that comply with the 

European Air Quality Standard DIN EN 15267 [210].  

 
FIGURE 3.14. 1st Prototype of the air quality assessment node composed by an ESP32-S2 
microcontroller, a SPS30 particle sensor and a MQ-135 gas sensor. 



 

To measure indoor gas concentrations, including those considered relevant to the triggering of 

asthma crisis and COPD exacerbation, the MQ-135 is used in this 1st IAQ prototype. The MQ-X family 

sensors include a heating element and an electrochemical sensing unit expressed by a SnO2 metal-

oxide (MOX) semiconductor. The heater is required because the sensor’s sensitive surface is only 

reactive at certain temperatures. This surface has a low electrical conductivity when exposed to clean 

air. Whenever the sensing element detects gases and particles in the air, its electrical conductivity 

increases. The MQ-135 is an air quality sensor with low selectivity, sensitive to Ammonia (NH3), 

Nitrogen Oxides (NOx), Alcohol, Benzene, Smoke and Carbon Dioxide (CO2). Its calibration was done 

accordingly, and it is documented in [211]. 

The node is characterized by an ESP-32 S2 microcontroller. This model only has a Wi-Fi 

communication module, and it is quite similar to its predecessor in most specifications. A remarkable 

feature is its ultra-low power (ULP) co-processor based on the RISC-V architecture, which enables a 

very low power consumption and more processing power when compared to the ESP32. 

3.2.2. Second Prototype 

A more sophisticated sensor node was developed, providing additional features when compared 

to the previous prototype. The 2nd prototype includes temperature and relative humidity 

measurements, particulate matter concentration monitoring, CO, VOC, and CO measurements, as well 

as sound levels measurements. 

Air temperature and relative humidity readings are performed by a Si7021 solid state sensor from 

Silicon Labs. This chip already performs signal processing and data calibration, and it has low power 

consumption. Relative humidity measurements have ±3% accuracy and a measurement range of 0-

80% RH. Temperature measurements have an accuracy of ±0.4°C for a 10°C to 85°C measurement 

range [212].  

As for the VOC and CO2 measurements, the Adafruit CCS811 air quality sensor breakout is used. It 

is an I2C gas sensor that provides readings of the total volatile organic compounds (TVOC) and 

equivalent carbon dioxide (eCO2) in the environment. The breakout features a MOX gas sensor, and a 

tiny microcontroller that controls the power of the MOX’s sensor hot-plate and reads the analog 

voltage. The eCO2 concentration is measured within a range of 400 to 8192 parts per million (ppm), 

and the TVOC concentration is measured within 0 to 1187 parts per billion (ppb) [213]. Relatively to 

CO measurements, these are made by an MQ-7 gas sensor. 
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The noise level measurements are performed by an electret microphone based on the Adafruit 

MAX9814 amplifier. This model is a high-quality microphone amplifier with automatic gain control 

(AGC) and low-noise microphone bias, which helps avoiding distortion when sound levels change 

randomly. Its operating frequency goes between 20 and 20 kHz, which is the frequency range of human 

hearing, and has an automatic gain from 40dB to 60dB [214]. 

The air quality portable sensor node also features an OLED screen that displays real-time readings 

of temperature, relative humidity, PM10 and PM2.5, CO2, tVOC and CO levels. 

A light indicator expressed by a LED ring placed at the front of the sensor node displays 3 different 

states (Figure 3.15):  

• Purple LED: It’s the initial phase of the node’s functioning and it starts whenever it is 

powered on. It is when the PM sensor activates the fan and performs its calibration 

process, which lasts for 10 seconds. 

• Blue and Green LED: When the sensors read air quality parameters that are equal or below 

the recommended concentration levels presented in Table 2.5. 

• Red LED: When the sensors read air quality parameters that are above the recommended 

concentration levels presented in Table 2.5.  

 
FIGURE 3.15. 2nd Prototype of the air quality assessment node, and 2 feedback states: a) Calibration 
phase; b) Good air quality levels. 

The portable sensor node is characterized by the ESP-32 S2 microcontroller and is powered up by 

a 3.7V Li-Po battery with 1800 mAh capacity. 



 

3.3. Indoor Localization and Activity Recognition 

The wearable node is part of an indoor positioning system based on a UWB tag and an IMU for activity 

classification (Fig.2). In this study, the activities being classified using both technologies comprise 

sitting, standing, and falling. The controlling platform of the wearable node relies on an ESP32-S2 

microcontroller, that presents Wi-Fi (IEEE 802.11) wireless connectivity and a 32 bits dual core CPU 

with up to 240 MHz clock frequency. The microcontrollers’ ADCs provide 12-bits of resolution. Also, 

the board’s ultra-low power (ULP) co-processor enables lower energy consumption when compared 

to other available boards from the ESP family. The ESP32-S2 board was programmed in C++, using 

Arduino IDE.  

The wearable also integrates an UWB tag from Pozyx®, which sends positioning data, such as the 

horizontal plane coordinates X and Y, and the elevation coordinate, Z. The positioning data is calculated 

by having as reference five UWB anchors placed in the room at fixed locations, as presented in Figure 

3.16. The anchors transmit at 850 kbps bit rate with 64 MHz pulse frequency. The Pozyx® system uses 

the multilateration method to calculate the tag’s position [215].  

 The positioning data is transmitted to the ESP32-S2 via I2C at 24Hz sample frequency and using 

Pozyx® official Arduino library to interact with the UWB device. To enable 3D positioning, four of the 

UWB anchors were positioned 2.46 meters above the floor, and the remaining one was placed at a 

different height, in this case, located 7 cm from the floor. The environment where the UWB system 

was deployed was heavily furnished. 

 

 
FIGURE 3.16. Positioning of the UWB anchors in the experimental room 
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The UWB anchors were calibrated automatically with the autocalibration method offered by the 

Pozyx® system. Table 3.1. presents the X, Y and Z coordinates of the four UWB anchors. The positioning 

coordinates measured by the UWB tag are collected by the ESP32 and are transmitted to the gateway 

node.  

TABLE 3.1. UWB anchors coordinates 

UWB Anchor ID Coordinate X (mm) Coordinate Y (mm) Coordinate Z (mm) 

0x7611 7890 6840 2460 
0x7621 650 6837 2460 
0x7653 6475 2013 2460 
0x7674 -477 2456 2460 
0x7649 3537 6650 70 

 

As for the IMU, it is responsible to acquire acceleration and gyroscope data from the performed 

activities for a given position provided by the UWB indoor localization system. In this case, an 

MPU9250 based device was included in the wearable node. It is a 9-axis micro-electromechanical 

system (MEMS) sensor with an integrated Digital Motion Processor (DMP). In this study, only the 3-

axis accelerometer and 3-axis gyroscope data are being considered. The device provides an 

accelerometer sensitivity up to 4800 LSB/g, the accelerometer range goes between 2 – 16 g, the 

gyroscope range is between 250 – 2000 °/s and gyroscope rate noise is 0.01 (°/s) rtHz. The sensor is 

connected to the ESP32-S2 via I2C and transmits data at 24Hz sample frequency. It is programmed to 

send raw accelerometer and gyroscope data up to 6 decimal places, along with the X, Y and Z 

coordinates from the UWB system through Wi-Fi and using the MQTT protocol. 

 

FIGURE 3.17. The wearable sensor node composed by an UWB tag (on top), ESP32-S2 and an IMU 

(beneath the tag) 



 

The accelerometer and gyroscope tend to introduce a small offset, or bias, in the signal output. 

This could induce a misalignment of the features used in the ML classification tasks and affect the 

results. The sensor bias was compensated by performing a calibration when initializing the sensor 

node. This was done programmatically, by measuring the bias values of the sensor in a resting state 

(i.e., placing the wearable node on top of a surface) and subtracting those values from the raw sensor 

data during normal operation. The average accelerometer biases during the sensor’s calibration step 

were 0.01, 0.02 and 0.15 m/s2 for the X, Y and Z-axis, accordingly. The average gyroscope bias was -

0.71, -0.39 and 0.17 °/s for the X, Y and Z-axis, respectively. The calibration process and the conducted 

experiments were made at a room temperature of 24°C. Beyond sensor bias calibration, digital low 

pass filters with cut-off frequency of 20Hz were applied for both accelerometer and gyroscope 

measurements.  

The microcontroller’s program uses 5.36 Mbits of storage space, corresponding to 51% of its 

memory capacity. The sensor node’s autonomy is assured by a 2500 mAh Li-Po battery. The node’s 

current consumption is on average 0.279 A providing a total autonomy of 8.96 hours. The wearable 

node can be placed at the torso or waist, using an elastic strap, as demonstrated in Figure 3.18.  

 
FIGURE 3.18. UWB wearable sensor node usage on the waist. 
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3.4. Edge Computing Layer 

Regarding the edge computing layer, the Raspberry Pi 4 Model B, 8GB RAM, was selected to serve as 

the gateway/aggregator node. This new Raspberry model features much better performance levels 

when compared to its predecessor, with a much faster CPU speed and better performance levels 

thanks to its Quad core Cortex-A72 (ARM v8) 64-bit SoC with 1.5GHz clock frequency. These 

specifications are an advantage as additional processing power is going to be required for the future 

integration of the generated ML models in this system.  

This computing platform functions as a Message Queuing Telemetry Transport (MQTT) server, and 

it is responsible for collecting and processing the data that comes from the wireless sensor nodes. 

MQTT is an efficient and extremely lightweight messaging protocol based on a publish/subscribe 

model. It runs over TCP/IP and it is mainly used in IoT deployments, as it is ideal to collect data from 

multiple connected sensors. Eclipse Mosquitto is configured on the gateway node as the MQTT 

message broker [216]. The Node-RED programming environment is used to configure the MQTT 

connections and process the collected data using JavaScript functions and the Python programming 

language. The gateway is configured to collect and process the data from the wireless sensor nodes 

and transmit it to cloud services expressed by a MySQL database when a Wi-Fi (IEEE 802.11) connection 

is available. When such condition is not met, the information is stored locally on a microSD card.  

 
FIGURE 3.19. Gateway/aggregator node expressed by a Raspberry Pi 4 B 

A security layer was implemented in the communication between nodes (MQTT clients) and the 

MQTT server, with username and password-based client authentication. Figure 3.20 shows an example 

of the interactions between the computing platform of a sensor node with the gateway node. 



 

  

FIGURE 3.20. Sequence of interactions between a sensor node from the device layer with the gateway 
node and its further actions  
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CHAPTER 4 

 Measuring the Effects of External Stimuli on Human Physiological 

Parameters 

This chapter addresses the utilization of the developed sensor nodes on three different experimental 

studies that aimed to estimate the effects of external environmental factors and stimuli on human 

physiological status and well-being. It begins with the analysis on how various indoor air conditions 

characterized by different temperature and relative humidity levels affect the autonomic nervous 

system and human thermal comfort. Then, the addition of an external stimulus based on music sound 

and stress noise, and its impact on human well-being is evaluated, as well as a prediction of stress 

levels in the presence of such stimuli. Moreover, this chapter explores the positive influence of virtual 

reality exergames on physiological and cognitive status. Lastly, a conclusions section closes this 

chapter. 

4.1. How different Indoor Environmental Conditions affect the Autonomic 

Nervous System 

4.1.1. Overview 

Thermal comfort has been considered a reference for human well-being and work productivity. It is a 

term referred to the assessment of one's perceived feeling regarding the thermal conditions of an 

environment. High and low levels of temperature and relative humidity (RH) may cause discomfort and 

even lead to serious health problems related with cardiac diseases and respiratory distress, particularly 

among young children and the elderly population [217]. The monitoring of thermal comfort levels 

along with indoor air quality needs to be considered specially in ambient assisted living environments, 

where smart healthcare systems and assistive services are deployed in living environments, to support 

more susceptible populations, e.g., elderly population and people with chronical diseases. A lot of 

attention has been given to ambient temperature and its effects on health in various studies from 

recent years, especially at a time when the effects of climate change are having a huge impact on 

society and on environmental health - the rise in temperature not only induces heat stress, but it also 

elevates outdoor concentrations of fine particulate matter, therefore affecting air quality levels [218]–

[223]. Respecting to indoor temperature, levels higher than 26°C can lead to adverse health effects 

[224], including emergency hospitalization, higher cardiovascular mortality, and heatstroke, which is 

more frequent in elderly people than in patients from other age groups. People leaving with dementia 

may not have a correct perception of the ambient temperature and may not even recognize that they 



 

are in a colder or warmer environment. Since people spend most of their time indoors, air conditioning 

systems and increased air motion (e.g., fans) to cool down the environment can help prevent heat-

related illnesses.  

Current directions of the research area of human thermal comfort have been considering the 

acquisition of physiological parameters to measure the comfort level of an individual in an 

environment characterized by different thermal conditions. The use of artificial intelligence algorithms 

to improve the environmental quality of an indoor space and thus make the environment more 

intelligent has brought innovation to this research area. In this context, future directions include the 

creation of an intelligent system that based on user comfort feedback - either subjectively or by 

collecting physiological parameters - will regulate room temperature based on the use of smart 

actuators. In this way, it is possible to improve the user's comfort levels and tailor the environment 

based on their own preferences, as well as helping the prevention of health problems associated with 

temperature and humidity, and other indoor environmental quality parameters.  

The World Health Organization (WHO) establishes safe and recommended temperature levels for 

indoor environments that range between 18°C and 24°C, although optimal temperatures can slightly 

vary in different climate regions [220].  

Besides bringing significant impacts on human physiological processes, relative humidity also 

facilitates the spread of allergenic organisms. It is an important parameter to consider specially in an 

office environment, where sensory irritation in eye and upper airways are two of the most common 

symptoms reported in such environments when lower relative humidity levels are measured (<30% 

RH), which can directly affect work performance and overall well-being [225]. In fact, higher relative 

humidity levels, e.g., 55% - 70% RH, can help improve IAQ as it suppresses resuspension of particles 

located in surfaces [226], [227]. However, there are some constraints regarding higher levels of air 

humidity (>60% RH), since it can also make breathing difficult in people with asthma, as it stimulates 

nerves in the lungs to narrow and tighten the airways [228]. Therefore, relative humidity levels that 

range between 40% and 60% reduce most adverse health effects and are considered ideal for indoor 

environments [229]. 
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4.1.2. Study contributions 

This study addresses the utilization of the components of the physiological parameter layer of the 

developed system addressed in Chapter 3 to analyse the impact of different indoor thermal and air 

humidity conditions on a subject’s well-being.  

The following steps are considered: 

1. Validation of the developed physiological parameter monitoring system based on unobtrusive 

BCG signal acquisition and the indoor environmental quality sensor node, addressed in 

Chapter 3.  

2. Study of human thermal comfort based on HRV analysis in a daily used office environment. 

Occupants of a daily used office were exposed to different air temperature and relative 

humidity levels that could be considered thermally discomfortable using smart actuator nodes. 

This part of the study was intended to analyse how adverse thermal conditions expressed by 

unusual temperature (30°C) and humidity levels (70%) can affect cardiorespiratory activity and 

the ANS response. Particulate matter concentration was measured throughout all experiments 

to perceive whether different humidity levels can indeed influence this air quality parameter 

in small office environments (9m2) and to confirm that this parameter will not influence the 

cardiovascular activity of the volunteers.  

3. Optimization of temperature and humidity sensor locations based on computational fluid 

dynamic (CFD) simulation. Since the considered workspace was a non-isothermal environment 

and not adapted for such kind of experiments, a simulation of the airflow produced by the 

rooms’ HVAC system and temperature distribution was estimated using CFD. Such simulation 

provided relevant information regarding the number of temperature and humidity sensors 

that would be needed to effectively measure spatial distribution of air temperature, as well as 

the selection of the most effective locations for their deployment in the room. 

4. Estimation of the subject’s comfort and thermal discomfort using HRV parameters and ML 

classification techniques. A prediction of whether a subject is at a thermally comfortable 

environment or at a discomfortable environment characterized by high temperature or 

humidity levels was conducted. In this context, it is considered that discomfortable 

environments are characterized by indoor air temperature (>24°C) and relative humidity levels 

(>60% RH) that lie outside the recommended limits established by the WHO. The trained ML 

algorithms included SVM, DT, RF, KNN, LR and MLP neural networks. Data augmentation 

techniques were applied to the dataset to enhance the ML classifiers accuracy. 



 

4.1.3. Methods 

This study involved the participation of a total of 7 healthy young adults, 4 females and 3 males, aged 

24 ± 0.8 years old with body mass indexes (BMI) 19.7 ± 1.2 kg/m2. Some difficulties and challenges 

arising from the global COVID-19 pandemic limited the physical presence and the participation of a 

larger number of volunteers during the period in which the experiments took place. All participants 

enrolled after informed consent and they were advised to not consume caffeine nor alcohol 

approximately 8 hours before the experiment. Details regarding all procedures and the objectives of 

the study were given before each session.  

The experiments were conducted in a small office room with the size of 2.65 m × 3.4 m × 2.80m, 

a total area of 9 m2 and a volume of 25 m3. This small office was considered more adequate to run 

experiments since it could generate the desired environmental conditions quickly. Volunteers were 

already familiar with this type of environment, namely the office where experiments took place, so 

there was no level of discomfort associated with that environment.  

The volunteers were instructed to remain seated passively on a chair containing the BCG sensor 

node addressed in Chapter 3. Spontaneous breathing was allowed, and they performed their 

conventional office work on their laptops. A PPG sensor node was placed on the earlobe, where muscle 

activity and other motion artifacts tend to be minimal.  

Air temperature and relative humidity were measured by six Si7021 sensors placed at different 

locations in the room. These sensors (S1, S2, S3, S4, S5, S6) were distributed and mounted on the walls, 

at 1.50m from the floor (Figure 4.1). The sensor’s locations were based on a preliminary study of the 

temperature distribution in this specific environment through CFD simulation, as it is going to be 

addressed.  

To change the room’s humidity, a smart humidifier (A1) was placed 1.30m away from the subject. 

The Original SmartMi Air Humidifier from Xiaomi was used. It is an evaporative humidifier and can be 

remotely controlled by an API, as it enables Wi-Fi 802.11 b/g/n connectivity. Thus, it is integrated in 

this system as a smart device. The humidification amount is greater than 240 mL/h, and it is 

recommended for spaces between 10-15 m2. 

The IAQ sensor node addressed in Chapter 3 was placed on top of the volunteer’s desk throughout 

the experiment. Different locations were considered for the positioning of this sensor node regarding 

spatial distribution of particles and gaseous pollutants. Each sensor node collected environmental data 

every 3 minutes and sent it to the gateway node. 
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FIGURE 4.1. 3D Isometric plan of the room (S1, S2, S3, S4, S5, S6: temperature and relative humidity 
sensors; IAQ: Air quality sensor node positions; A1: Smart humidifier) 

The system offers a graphical user interface for visualizing the data that the gateway node 

processes in real-time. The PM concentrations, temperature and relative humidity levels, as well as 

the BCG signal and the HRV analysis in the time-domain are displayed in the system’s dashboard, as 

depicted in figure 4.2. 

 
FIGURE 4.2. System’s dashboard, displaying real-time values of the measured parameters 

The experiments with volunteers took place between June and August 2021. Three different 

thermal conditions were considered for this experiment: (1) a neutral temperature of 24°C, with 

relative humidity near 50%; (2) neutral temperature of 24°C, with relative humidity near 70%; (3) hot 



 

air temperature of 30°C, with relative humidity near 50%. The thermal conditions were changed by 

the built-in air conditioning system an using the smart humidifier. Such range of temperatures was 

selected according to common air temperatures that the human body can be exposed to throughout 

the year in mainland Portugal (range between 18°C – 30°C). During summer period, the lowest indoor 

ambient temperatures are around 24°C, thus being considered the neutral temperature for this 

experimental procedure. 

Each participant started the experiment after being accustomated and thermally comfortable with 

the environment. Before each experiment, it was ensured that the initial temperature of the 

environment was 24°C, which was obtained by calculating an average of all temperature values read 

by the sensors distributed in the environment. As demonstrated in Figure 4.3, physiological data was 

collected for 10 minutes total during all three conditions, and HRV analysis was only preformed in the 

final 5 minutes, which is the standard duration of short-term recordings for HRV [230].  

 
FIGURE 4.3. Experimental schedule for all different thermal conditions and the thermal climatization 
process. 

After the initial condition (1) was met, the smart humidifier was remotely configured to achieve a 

target humidity of 70%, which took approximately 40 minutes to reach. Most participants stayed inside 

the room during the thermal condition changing process. Right after the end of the second condition 

experiment (2), the heating process took place, and the air conditioning system was set to achieve a 

room temperature of 30°C. After approximately 40 minutes, the third and final physiological 

measurements were taken. 

4.1.4. Applied AI for Classification of Thermal Comfort and Discomfort  

Supervised machine learning (ML) classification algorithms were implemented to create a model that 

could predict the comfort status of a person based on different thermal conditions environments. In 

this phase, the HRV metrics were extracted from a 90-seconds-long-time window. Then, the time 

window segment was shifted 50 seconds to compute new HRV values and thus prevent overlapping of 

samples. This procedure was carried out until the end of the entire recording with time length of 

approximately 10 minutes. It has been proven that ultra-short term recordings of 90 seconds provide 

reliable estimations of LF (ms2 and n.u.) and LF/HF ratio [231], [232], as well as for all other HRV time-

domain parameters [233].  
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This initial procedure allowed the generation of a greater amount of HRV samples for the dataset to 

be used in ML classification. 

A. Data augmentation using generative adversarial networks 
The ML model training based on the original dataset achieved poor model performance (accuracy 

between 61% and 73%). In this way, data augmentation based on the use of synthetic data techniques 

were applied to increase the size of the dataset and in turn help improve the performance of the 

traditional classification algorithms. Synthetic data examples were merged with original training data, 

obtaining an augmented and more balanced training dataset. Synthetic data is often used in healthcare 

industries to produce artificially generated datapoints with similar attributes to the real data, and 

therefore expand a limited dataset or allow the share of sensitive data more easily and without the 

associated privacy issues. Synthetic data generation was based on the implementation of a generative 

adversarial network (GAN). The GAN is an algorithmic architecture that consists of two neural networks 

that compete against one another [234]. One network is a generator, which tries to generate new data 

like real data, and the other is a discriminator, which has the goal of distinguishing between generated 

content and real content. In the GAN structure, the generator output is connected to a discriminator 

input, and the generator’s weights are updated according to the discriminator’s classification of 

fake/real data (Figure 4.4).  Initially, the generator receives random noise as input, which will be 

transformed through a function, and then it is passed on to the discriminator, which will learn to decide 

whether the data has been produced by the generator or not. The loss function of the discriminator 

penalizes the discriminator whenever it misclassifies an instance, and the weights of the discriminator 

network are updated through backpropagation.  

 
FIGURE 4.4. Generative Adversarial Network Architecture 



 

In this study, the ydata-synthetic Python library was used for generating synthetic data based on 

GAN. A Wasserstein GAN with gradient penalty (WGAN-P) variant was considered, as it provided better 

results for the generation of synthetic samples when compared with simpler types of GAN, such as 

Vanilla GAN.  

B. Machine learning classification 
With the use of an expanded dataset, Support Vector Machine (SVM), Decision Trees (DT), Random 

Forest (RF), k-Nearest Neighbours (KNN), Logistic Regression (LR) and Multilayer Perceptron (MLP) 

neural network were used to predict if a subject is in a thermal comfortable environment (neutral) or 

discomfortable environment (hot/humid) based on HRV metrics.  

The SVM is an algorithm that is based on the separation of data points by finding a hyperplane 

that maximizes the margin between the target classes. It is effective in high-dimensional spaces and 

robust to overfitting [235]. 

The DT is a non-parametric algorithm that builds a hierarchical tree structure of decision rules and 

their possible outcomes [236]. Each internal node represents a decision based on a feature, each 

branch denotes the result from that decision and each leaf node represents the class label. It is an 

algorithm that can handle nonlinear relationships. However, it may not perform well when the dataset 

presents imbalanced data. 

RF algorithm combines the output of multiple DT to create a more robust and accurate model 

[237]. This algorithm tends to perform better when compared to single DT since it limits variance and 

overfitting by combining multiple trees. In this way, this algorithm is expected to produce more 

accurate predictions on new and unseen data.  

KNN is a non-parametric classifier that uses the concept of proximity to classify and predict how 

an individual data point integrates a certain group. It assumes that similar data points can be found in 

close proximity. The algorithm’s input is the K closest training example of the dataset. The algorithm 

identifies the nearest neighbors of a given query point by calculating the distance between this point 

and the others. Only then, the algorithm assigns a class label to that point. 

The LR algorithm is a statistical method that models the probability of an event occurring based 

on a given dataset with independent variables. It applies a logistic function to a linear combination of 

features, giving a probability score between 0 and 1. 

MLP is an artificial neural network (ANN) that is based on multiple layers of interconnected 

artificial neurons [238]. Each neuron is a computational unit that receives weighted inputs and 

produces an output by using an activation function on the weighted sum of its inputs. It is an algorithm 

that offers good performance on a variety of classification problems and can easily learn the non-linear 

relationships between features. 



67 

Since the volunteers performed the same activity during the different sessions and were not 

subjected to any external stimuli other than the room temperature variation, it is expected that the 

obtained results of the subject’s comfort status are directly dependent of indoor air temperature 

variables.  

Preprocessing operations included the normalization of HRV values, so that all variables are 

computed with the same scale, and label encoding of the prediction target. As a result, categorical 

variables that characterized the type of thermal environment were converted into the numerical 

values “0” (neutral) and “1” (hot).  The dataset was based on eleven features (mean HR, maximum HR, 

minimum HR, mean RR, SDNN, RMSSD, LF, HF, LF/HF, VLF and Stress Index) and a target, which is the 

type of thermal environment (neutral/hot). All classifiers were implemented with Python 

programming language and Scikit-learn machine learning library. 

Each ML classifier performance was estimated using cross-validation techniques based on K-fold 

cross validation with 10 folds, since the common train-test split method can cause an unbalanced 

distribution of the target classes and lead to bias in the training phase of the model.  

The evaluation metrics for evaluating the performance of the ML models were based on classification 

accuracy, precision, recall and the F1-score. Precision refers to the ratio of correctly positive classified 

peaks to the total number of positive classified peaks. Recall measures the proportion of positive 

classified peaks that were classified correctly and F1 score is the weighted average of precision and 

recall. 

4.1.5. Experimental Results and Discussion 

Three different topics are going to be addressed in subsections: Firstly, a simulation of the air 

temperature distribution in the office environment where experiments were conducted. Secondly, the 

analysis of HRV parameters and respiration rate of the volunteers under different ambient 

temperature and relative humidity conditions is carried out. Finally, the third topic addresses the use 

of machine learning algorithms to estimate a user’s comfort and discomfort based on the measured 

HRV indices. 

A. Simulation of Indoor Air Temperature Distribution  
A simulation based on computational fluid dynamics (CFD) was used to study the airflow patterns 

induced by the heating, ventilation, and air conditioning (HVAC) system (Figure 4.5), as well as the 

temperature distribution in the room. The ANSYS Fluent software [239] was used to perform the CFD 

analysis. Simulations were achieved in a transient state regime using the k-ε turbulence model and the 

energy equation.  The transient solution was conducted for ~1200s of real-time. The boundary 

conditions included two outlet vents (in blue) and one inlet (in red), as depicted in Figure 4.6. Regarding 

the external walls, a convective heat transfer coefficient of 5 W/m2×K was considered, with free stream 



 

temperature equivalent to the measured temperature outside the room during the days when 

experiments took place. 

 
FIGURE 4.5. 3D Isometric plan with CFD simulation of the air flow distribution from the HVAC system 

in the experimental room environment, using ANSYS Fluent software 

 Results of the temperature spatial distribution in a XY plan after 90s of simulation are 

presented in Figure 4.6. An initial temperature of 22 °C was considered. The inlet vent, marked in red, 

was configured for 32°C air temperature and velocity magnitude of 3 m/s. According to the 

temperature scale indicated in figure (22°C - 32°C) and by observing the temperature distribution in 

both XY planes, it is possible to ascertain that the thermal stratification of the air in the indoor 

environment is not considerable near the walls. Moreover, temperature probes were used to measure 

the simulated temperature at specific locations near the walls, namely at three different heights – Y= 

0.75m, 1.5m and 2.25m. The locations where probes were placed are marked in red in Figure 4.6.  

Each height presented the same temperature level of 26.8±0.26°C, for both X-axis. The temperature 

variation between different heights is not significant, and thus the hypothesis of thermal stratification 

in this specific environment is discouraged by the obtained results. Therefore, the positioning and 

location of the sensors was quite optimised, thus eliminating the need to place several sensors at 

different heights. In this case, four sensors were chosen to be placed at the medium height of 1.5m, as 

marked in the figure by S1, S2, S3 and S4. 
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Considering the temperature distribution in the interior volume of the room, a YZ and YX plane has 

been considered for simulation purposes. Figure 4.7 depicts the temperature distribution after 20 

minutes of running a simulated air conditioning system. One can see an incidence of hot air flow 

towards the inlet duct at the intersection of the two planes, which dissipates as soon as it comes in 

contact with the floor. Even so, the temperature reached 29°C uniformly along the planes and did not 

vary considerably along the Y axis, demonstrating once again that temperature stratification is not at 

all pronounced under these experimental conditions. 

FIGURE 4.6. 3D Isometric plan with CFD simulation of thermal distribution in the room environment 
for two XY plans near the wall, for T= 90 seconds of simulation time. Outlet vents are presented in 
blue and the inlet vent in red color. 



 

 

FIGURE 4.7. 3D Isometric plan with CFD simulation in the room environment for a YZ and YX plane, for 
T= 20 minutes of simulation time. Outlet vents are presented in blue and the inlet vent in red color. 

The simulated results for temperature measurements and its time evolution in each selected 

sensor location (S1, S2, S3, S4, S5, S6) for a time sequence of 1200 seconds (T=20 minutes) are 

presented in Figure 4.8. 

 
FIGURE 4.8. CFD simulation of temperature measurements and its evolution for each sensor location 

for a time sequence of 1200 seconds. 

 

 

S5 
S6 
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B. Measurements of indoor air temperature distribution and air quality in the experimental 
environment 

Having chosen the positioning of these sensors based on the information provided by simulations, a 

final analysis with real data of the temperature distribution in the office environment was conducted 

using Si7021 sensors (Figure. 4.9). This allowed to detect any temperature deviation across all sensors’ 

readings over time and helped to define the duration of each climatization process. This temperature 

and humidity distribution analysis was made during the winter season, where the average indoor 

ambient temperatures can range between 20°C and 22°C. The room remained unoccupied throughout 

this experiment. 

 
FIGURE 4.9. Air temperature and relative humidity distribution (dashed lines) measured by S1, S2, S3, 
S4, S5 and S6 in the experimental office environment. A: Neutral Environment (no actuators);  
B: Activation of humidification system; C: HVAC system turned on for heating process. 

During the first 20 minutes, initial temperature and relative humidity measurements took place, 

without any influence from actuators, such as the HVAC system or the humidifier. An average initial 

temperature of 20.7°C and average relative humidity of 58% were recorded (A). This initial condition 

is equivalent to the first phase of acquisition of physiological signals. Next, following the protocol 

initially outlined, the humidification of the indoor space was initiated (B). The smart humidifier was 

remotely regulated for a target humidity of 70% RH, which took approximately 40 minutes to reach. 

For the next climatization process, the air conditioning was regulated to 30°C with its maximum air 

flow velocity (C). An average temperature of 28°C and relative humidity of approximately 46% RH was 

reached after 40 minutes. All Si7021 sensors showed a very similar response. However, dispersion of 

sensor characteristics regarding relative humidity readings is visible among different sensors (e.g., S6). 

Indoor air quality monitoring, which involved the analysis of particle concentration (PM1, PM2.5, PM4 

and PM10), as well as of gas concentration levels, did not change significantly between the three 

thermal conditions. Figure 4.10 demonstrates PM concentration variation across three thermal 



 

climatization conditions, which was measured during the analysis of temperature and relative humidity 

distribution presented in Figure 4.9. Overall, the air quality index was considered very good, since the 

indoor environment presented an average of 1.6 µg/m3 of PM2.5 concentration during all experiments. 

The use of actuators for both humidifying and heating the air caused, however, slight changes in the 

concentration of particles. The following figure shows the three experimental periods: neutral climate, 

without actuators (A), humidification process (B), heating process through HVAC system (C). A 3rd order 

polynomial trendline was used to analyse PM Concentration measurements fluctuation across the 

different stages.  

 
FIGURE 4.10. Particulate concentration measures (PM1.0, PM2.5, PM4.0, PM10.0) and associated 
trendline during three thermal climatization processes. A: Neutral Environment (no actuators);  
B: Activation of humidification system; C: HVAC system turned on for heating process. 

A slight decrease was denoted in the period represented by (A), as there was no air movement 

induced by the occupation of the laboratory, a factor that contributes to an increase in the 

resuspension of particles located on surfaces. During the humidification process the concentration of 

particles remained stabilized (B). Although it is expected that higher relative humidity decreases PM 

concentration [227], a reduction of air movement in the room, since it remained unoccupied for 30 

minutes, contributed to the reduction of particle resuspension. 

During the final climatization process (C), which implies the use of mechanical ventilation with 

filtration, the PM concentration tended to decrease. The air extraction by the outlet vents as well as 

the efficient filtration of the HVAC system are factors that contributed to the reduction of PM 

concentration levels, as expected.  

Regarding the MQ-135 gas sensor, the average gas concentration measured during ambient 

temperature, as well as during the humidification process, was around 3.18 ppm. Since the operating 

mode of this sensor that its heater coil remains at a constant temperature level to allow the proper 

functioning of its sensitive components, its standard detection conditions are set for a temperature of 
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20°C ± 2°C [240]. Thus, the measurements obtained for thermal conditions of 30°C were not 

considered. 

The results obtained with both PM and gas sensors allowed us to infer that indoor air quality did 

not have an influence on physiological processes and HRV of the volunteers during all the experimental 

periods. 

C. Human Thermal Comfort and HRV Analysis 
BCG is always subjective to external noise and small artifacts that are generally caused by slight 

movements of the body, either by adjusting our sitting position or by performing hand or trunk 

movements. Since the objective of these experiments is to acquire data while performing regular office 

activities, the subject is free to perform any necessary movements. Taking this into consideration, the 

reliability of using the developed BCG sensor node for extracting HRV was studied. Firstly, a statistical 

analysis of peak detection classification in the BCG signal, using J-J peaks, was performed. A time 

window of the last 5 minutes recordings of both the PPG and BCG signals during neutral room 

temperature conditions for all volunteers was considered. The total number of peaks detected with 

the PPG, which is considered the reference node, was compared with the number of detected peaks 

from the BCG signal. In this classification, peaks were classified as true positive (TP), false positive (FP) 

and false negative (FN). TP classification refers to correctly classified peaks, FP to incorrect 

classifications and FN to J-J peaks not detected. To calculate the performance of the peak detection in 

the analysed BCG signals, in comparison with the PPG, four classification metrics were considered: 

accuracy (Acc), precision (Prec), recall and F1 score. Table 4.1 presents the results obtained for all 7 

volunteers. 

TABLE 4.1. Statistical analysis of peak detection for all seven volunteers using the BCG signal 

Subject TP FP FN Acc (%) Prec (%) Recall (%) F1 

1 405 2 1 99.26 99.50 99.75 99.63 

2 313 0 27 92.05 100 92.05 95.86 

3 392 20 1 94.91 95.14 99.74 97.39 

4 350 3 19 94.08 99.15 94.85 96.95 

5 298 16 15 90.57 94.90 95.20 95.05 

6 504 12 1 97.48 97.67 99.80 98.72 

7 344 10 24 91.00 97.17 93.47 95.29 

Total 2606 63 88 94.19 97.65 96.41 96.98 



 

Generally, accurate results were obtained for most volunteers, where Subject 1 presented an 

accuracy value of 99.2% and F1 score of 99.63%, whereas worse BCG signal readings were obtained 

for Subject 5, with an accuracy of 90.57% and F1 score of 95.05%. In total, from 2606 detected peaks 

of all seven cases, 63 were classified as FP and 88 were missed (FN), which gives an accuracy of 94.19% 

and a F1 score of 96.98%. Ideally, the general accuracy of the peak detection classification using the 

BCG signal should exceed 95% in order to consider the analysis of HRV based on this method.  

Moreover, a comparison between the HRV calculated with a 5-minutes sample of BCG and PPG was 

conducted. For this case, only 3 volunteers were analysed for both cardiac monitoring techniques, 

under neutral temperature conditions (Table 4.2). 

TABLE 4.2. HRV parameters extracted from both BCG and PPG methods 

Subject Mean HR SDNN RMSSD LF/HF  
BCG PPG BCG PPG BCG PPG BCG PPG 

1 88 76 105 115 160 154 1.3 1.1 
3 79 67 60 48 54 56 0.7 0.67 
4 81 81 95 42 128 66 0.5 0.4 

Average 82.6 74.6 86.6 68.3 114 92 0.83 0.72 

A ±4 bpm standard deviation was obtained for mean HR, ±9 ms for SDNN, ±11ms for RMSSD and 

± 0.05 for LF/HF.Since there are BCG samples with poor accuracy values (<95%), which were mainly 

caused by motion artifacts, this method will not be considered for HRV analysis in the present study 

and will only be used for respiratory activity assessment. Therefore, the following HRV analysis will be 

performed using PPG signals.   

The average values and standard deviation of time-domain HRV parameters obtained for the three 

different thermal conditions for all 7 volunteers are presented in Table 4.3. The frequency-domain 

results are presented in Table 4.4. One-way analysis of variance (ANOVA) test was conducted to 

identify significant changes between the three conditions, where a p-value lower than 0.05 was 

considered statistically significant. 

TABLE 4.3. Time-Domain Analysis (Average ± SD) of HRV under three different thermal conditions  

Conditions  
(Temperature | 

Relative Humidity) 
Mean HR Mean IBI Max HR SDNN RMSSD 

24°C | 50%  76±11 804±100 92±13 64±27 84±44 

24°C | 70% 76±13 809±117 90±14 65±30 81±45 

30°C 82±16 758±115 96±16 50±21 54±27 

p-value 0.728 0.693 0.731 0.523 0.375 

 



75 

 

 

TABLE 4.4. Frequency-Domain Analysis (Average) of HRV under three different thermal conditions  

Conditions  
(Temperature | 

Relative Humidity) 
LF (ms2) 

HF 
(ms2) 

LF/HF VLF 
Stress 
Index 

24°C | 50%  1329 2210 1.04 95 8.3 

24°C | 70% 1074 1939 1.24 116 8.4 

30°C 1316 1106 2.01 166 11 

p-value 0.847 0.517 0.341 0.557 0.382 

This experiment did not show significant alterations of HRV parameters regarding the volunteer’s 

exposure to different thermal conditions (p > 0.05). An average heart rate of 76 bpm was obtained for 

conditions (1) and (2), which considered a neutral air temperature and an increase of relative humidity 

levels (50%-70%). When considering short-term exposure to higher temperature levels of 30°C, 

average heart rate levels slightly increased to approximately 82 bpm. An estimation of the ANS 

behaviour and thermal comfort of the subjects under these different conditions was best analysed in 

the frequency-domain.  

The LF component presented similar values when considering neutral temperature and hot 

temperature (~1300 ms2), and slightly lower when a higher humidity environment was established 

(~1000 ms2). Parasympathetic activity from all subjects decreased between the exposure from 50% to 

70% relative humidity at a neutral temperature of 24°C, as assessed with the HF component.  

A more pronounced decrease was observed between neutral (24°C) and hot air temperature 

(30°C) exposure (± 1104 ms2), as also observed in the LF/HF ratio parameter (± 0.97) and VLF. 

The RMSSD parameter is directly correlated with HF power [230] and  gives information about the 

parasympathetic activity of the ANS using time-domain analysis. A decrease in RMSSD values, similar 

to that obtained with HF analysis, was also observed. This study demonstrated that hot air temperature 

at 30°C induced higher stress levels and contributed to reduce the human thermal comfort after a 

short period of exposure, as perceived by a decrease in parasympathetic activity given by higher LF/HF 

values. Such alteration of the ANS response maybe explained by the activation of thermal regulatory 

reflexes that include sweating and stimulation of reflex cutaneous vasodilation. Additionally, lower 

stress index values were obtained for an environment with neutral temperature (SI ≈ 8) when 

compared with a higher temperature exposure (SI = 11). 



 

When considering a 20% increase of relative humidity at neutral temperatures, a slight change in 

the ANS response is obtained, especially a decrease in the parasympathetic tone (LF/HF = 1.04 for 50% 

RH; LF/HF=1.24 for 70%). Values above 60% are considered uncomfortable for indoor environments 

[241]. Although these experiments were carried out during short term exposures of 10-30 minutes, 

slight effects on HRV could still be observed when considering 70% RH. Consequently, a greater impact 

of RH would be observed with higher air temperature conditions, since higher levels of water 

molecules are also present in the air, which makes breathing more difficult.  

The relation between the respiration rate and HRV has been evidenced mostly in the frequency-

domain, when compared with the time-domain [242]. Parasympathetic branch activation is normally 

associated with a low respiration rate, where an increase of HF power and decrease of LF is obtained, 

which proves that slow-paced breathing shifts sympatho-vagal balance towards vagal activities [243]. 

This study also sought to analyse the relationship between the breathing rate in breaths per minute, 

performed with the BCG signal analysis and DWT, and HRV measurements were obtained for each 

environmental condition during the last 5 minutes. No significant differences were found between 

estimated respiration rates from these three different thermal environments (p ≤ 0.05). Data regarding 

the respiration rate estimated with the system developed for each volunteer, as well as the ratio 

between LF/HF are shown in Figure 4.11. 

 
FIGURE 4.11. Respiration rate and LF/HF ratio for all volunteers under three different thermal 
climatizations. 

It can be seen that for most of the volunteers, the average breathing rate rose slightly when 

comparing a neutral environment (24°C, 50% RH) with a more humid environment (70% RH). Still, 

three of those seven volunteers slightly lowered their breathing rate. Interestingly, all volunteers, not 

counting V3, maintained their breathing rate when compared with a neutral environment in a warmer 
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environment (30°C). When correlating the breathing rate with the ANS response, most of volunteers 

who presented a higher breathing rate, when comparing the first condition with the second one, also 

had a slight increase in the LF/HF ratio, which indicates greater sympathetic activity. In the same way, 

three of the seven volunteers who lowered their breathing rate also showed a lower LF/HF ratio, which 

proves the activation of the parasympathetic system in this scenario. Differences between results 

obtained for all different volunteers may be associated with different levels of well-being and climatic 

preferences, which differ from individual to individual. Regarding a warmer environment, although the 

respiratory rate was similar to that of a neutral one, the sympathetic system activation associated to 

the increase in LF/HF ratio was more pronounced in most cases, as previously analysed, and in this 

case, thermal stress induced by the heat, presented a greater impact on the well-being and thermal 

comfort of volunteers. 

D. Comfort and Discomfort Classification based on Machine Learning 
The degree of a person’s discomfort can be derived from physiological responses expressed by 

changes in HRV indices, namely by a shift in sympathetic activity [244]. Therefore, a binary 

classification between comfort and warm-induced discomfort is considered in this part of the study.  

In the data augmentation procedure using GAN, the number of generated samples was chosen to 

be the same number of real datapoints of each class (neutral, humid, hot). Figure 4.12 demonstrates 

the scatter plot of the original datapoints and the generated output using GAN at the initial training 

step and at the final training step. Mean HR and Mean RR features were selected for this comparison 

since both variables have a negative correlation. 

 
 
FIGURE 4.12. Comparison of a) original and b) GAN outputs at the initial training step and at 1000th 
training step 

 

a) b) 



 

The GAN’s ability to learn and replicate the pattern of both these features during training and 

predicting was quite efficient. The generated values at the 1000th epoch were quite similar to those 

of the original dataset for all features, as seen in Figure 4.12. 

Synthetic data generation may not match entirely to the original data or may fail at capturing the 

different relationships between the dataset features. This is not completely undesired, since it is 

expected that generated data provides a certain percentage of dissimilarity in relation to the original 

data, especially when privacy is a fundamental right in health-related data and identity disclosure must 

be avoided [245]. However, the generated data must capture the inter-dependency between the 

characteristics of the features, as well as the distribution and statistical properties of the original 

dataset. Some metrics that can be used to assess the quality of a synthetic dataset are based on the 

use of heatmaps.  

The heatmap presented in Figure 4.13 pictures the mutual dependencies between HRV features 

in the original dataset of humid environmental conditions and the generated dataset. A very close 

mutual dependency between the features of the real data and the synthetized one is achieved, as can 

be visualized by the similarity of colour distribution of the side-to-side heatmaps. This assured that the 

synthetized data could be used in the upcoming machine learning classification tasks. Good results 

were also achieved for the neutral environment conditions and hot air conditions datasets. 

 
FIGURE 4.13. Comparison of mutual information between a) original and b) generated data features 
for the humid conditions’ dataset 

Figure 4.14 presents the average values of each analysed HRV parameter for both original and 

synthetized data in the neutral and humid conditions’ datasets. The average values of the synthesized 

data for each parameter are very similar to the original values. This also confirms that the data utility 

of the generated dataset is expected to be high. 
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FIGURE 4.14. A comparison of original and synthetized data average values for each HRV parameter 

for a) neutral conditions and b) humid conditions 

The ML models that were trained with original data only presented poor performance levels, 

having reached accuracy levels between 61%, for the case of LR, and 73%, for the RF.  

Therefore, the synthetic data samples were combined with the original training data to create a 

more balanced and augmented training dataset for the ML classifiers. These models are going to be 

used to predict if the subject is on a thermally comfortable environment or in a discomfortable 

condition based on the HRV indices. The thermally comfortable environment is characterized by the 

neutral conditions (24°C) and relative humidity (50%), which are within the recommended levels of 

indoor temperature and humidity established by the WHO [220]. The discomfortable environments 

were characterized by indoor air temperature (>24°C) and relative humidity levels (>60% RH) that lie 

outside the recommended range [229]. Therefore, the binary classification was considered for two 

cases: to distinguish between comfort and warm-induced discomfort, and then between comfort and 

discomfort induced by high humidity levels.  

The performance of SVM, DT, RF, KNN, LR and MLP algorithms for the first case are presented in 

Table 4.5. The algorithms were trained six times for the same dataset distribution, and a mean of the 

evaluation metric values for each classifier was calculated. Good model performances were achieved 

for all ML classifiers, except for the LR model, which presented lower performance (<70%). The KNN 

classifier provided the highest accuracy value of 86%, and the best F1-score of 0.867.  

All ML models increased on average their accuracy by 17%, when compared to the original dataset 

without synthesised data. 

 

 

 



 

TABLE 4.5. Performance of the ML algorithms for estimating comfort and discomfort under hot 
thermal conditions (24°C - 30°C) 

Evaluation Metrics SVM DT RF KNN LR MLP 
Accuracy 81% 75% 83% 86% 64% 80% 

F1-Score 0.807 0.778 0.847 0.867 0.722 0.817 

Precision 0.930 0.805 0.875 0.932 0.652 0.839 

Recall 0.730 0.757 0.825 0.819 0.815 0.789 

As for the binary classification between comfortable and discomfort induced by high humidity 

levels, presented in Table V, the algorithms were better at picking up the differences between both 

classes in general. The highest accuracy was again achieved by the KNN classifier, with a mean value 

of 88% of correctly classified instances and a mean F1-score of 0.892. Lower performances were 

achieved for both DT and LR algorithms. These results suggest that accurate predictions of whether 

the subject is on a thermally comfortable or discomfortable environment based on his HRV indices can 

be achieved with the use of ML classification algorithms.  

TABLE 4.6. Performance of the ML algorithms for estimating comfort and discomfort under humid 
conditions (50% - 70%) 

Evaluation Metrics SVM DT RF KNN LR MLP 
Accuracy 77% 73% 84% 88% 73% 80% 

F1-Score 0.809 0.731 0.853 0.892 0.759 0.817 

Precision 0.733 0.801 0.846 0.899 0.712 0.812 

Recall 0.927 0.682 0.867 0.891 0.836 0.857 

4.1.6. Remarks 

This study innovates when extending and improving on existing healthcare focused IoT systems using 

unobtrusive sensors for cardiac assessment to any indoor environment, while using the benefits of ML. 

We considered the analysis of temperature and humidity distribution in a real scenario, characterized 

by a non-isothermal office room. Simulations based on computational fluid dynamics were conducted 

to predict the air temperature distribution in this specific environment and to find the optimal location 

and number of temperature sensors to be distributed. Finally, physiological data was collected and 

analyzed under different conditions of temperature and humidity to ascertain possible changes in HRV 

associated with different levels of thermal comfort. For that purpose, the present study reports the 

development of a healthcare-IoT based system composed of an indoor environmental quality 

assessment, together with a cardiac and respiratory assessment layer based on PPG and BCG signal 

analysis.  
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Considering all three different thermal conditions, higher LF/HF was obtained under a short-term 

exposure to a hot environment at 30°C, which reflects thermal stress and activation of thermal 

regulatory activities by the autonomous nervous system. Although no significant changes in HRV were 

obtained for environments with different humidity levels (50%-70%), lower LF/HF were measured for 

a neutral environment of 50% RH when compared with more humid settings. This indicates that 

changes in ambient air temperature from a neutral to a hot environment led to the activation of 

thermal regulatory reflexes and thermal discomfort, perceived by an increase of LF/HF. Moreover, the 

respiratory rate extracted from the BCG signal was slightly higher in a more humid environment (70%) 

than on a neutral one (50%) for most volunteers. Evidence that respiratory rate is correlated with the 

ANS response was also verified in this study, when considering exposure to different thermal 

environments. Finally, supervised ML classification algorithms were used to create a model that can 

predict whether a person is at a thermally comfortable environment or discomfortable environments 

characterized by hot air or humid air conditions. The HRV parameters were used as inputs and the best 

results were achieved with the KNN classification algorithm, with 86% accuracy for the hot air thermal 

condition, and 88% for the humid air condition. 

The study presented in this sub-chapter led to the publication of an article in a scientific journal: 

M. Jacob Rodrigues, O. Postolache, F. Cercas, (2022) "Unobtrusive Cardio-Respiratory Assessment for 

Different Indoor Environmental Conditions," in IEEE Sensors Journal, vol. 22, no. 23, pp. 23243-23257, 

1 Dec.1, 2022 | https://doi.org/10.1109/JSEN.2022.3207522  

 

4.2. How Stress Noise and Music Stimulation influences the Autonomic 

Nervous System 

4.2.1. Overview 

The adaptation of the surrounding environment to the physiological needs of its inhabitants has been 

one of the key objectives of smart environments. These environments are built around a sensor 

network that provides real-time data on environmental quality conditions, as well as the health status 

of an individual. The ability to process this data and act on it to improve the quality of life is what makes 

these solutions so indispensable, especially when considering their integration in ambient assisted 

living (AAL) environments [246]. These adaptations normally involve improving environmental quality 

conditions, such as air quality [247], thermal comfort, lighting comfort [248] and automation of some 

tasks. Additionally, the combination of auditory and olfactory stimuli has been proven to reduce 

anxiety levels, stress and even change emotional states [249], [250]. In fact, incorporating auditory 

stimuli into a smart environment, such as nature sounds and relaxing melodies, as well as other types 

of music, has been shown to be very beneficial for PRV and effective in lowering stress levels [251]. 

https://doi.org/10.1109/JSEN.2022.3207522


 

Stress is a physiological response resulting from the threat to body homeostasis upon exposure to 

extrinsic or intrinsic factors [252]. If this condition occurs only for a few minutes or hours, it is referred 

to as acute stress. A more serious condition where this stress state persists for days or even months is 

mentioned as chronic stress. The parts of the human body that are activated by stress and which will 

trigger all the necessary responses are the hypothalamic-pituitary-adrenal (HPA) axis and the 

autonomic nervous system [252]. The ANS is composed of two distinct divisions: the sympathetic 

nervous system and the parasympathetic nervous system [253]. Under a stressful condition, the 

sympathetic system is activated, generating an organism response that involves the release of 

hormones such as adrenaline and cortisol. In this way, the activation of this nervous system branch 

triggers a "fight or flight" response which increases the heart rate, lowers the PRV and inhibits the 

activity of certain organs, so that the organism can react effectively to dangerous and stressful events. 

On the other hand, activation of the parasympathetic system triggers a state of relaxation and 

unstress, presenting the opposite effects to those provoked by the sympathetic system - reduction of 

the heart rate, higher PRV, among others. The balance between these two branches is what maintains 

homeostasis in the human body.  

One of the stress sources present in our daily lives is noise, and it is estimated to affect more than 

95 million Europeans throughout the day [254]. It is a stimulus that can often be present without 

people realizing it, but which drastically affects our health, especially our nervous system balance. 

Continuous noise sounds triggers an acute stress response that will increase blood pressure and heart 

rate, which can then lead to serious health problems such as cardiovascular disease and cognitive 

impairment [255]. Other health-related symptoms that may be associated include loss of productivity 

at work, prevention of sleep (if these events happen during the night), and hearing loss. These emission 

sources are commonly present in urban areas, such as road vehicles, aircrafts, and even ventilation 

and air conditioning systems. Such sources emit low frequency noise (<500Hz), which propagates very 

efficiently. Similarly, higher frequency noises are equally present. Sounds as ordinary as flying 

mosquitos, whistles, glass breaking and even computer devices seem to pay a high price in our well-

being and stress levels.  

Therefore, the addition of music stimuli in an assisted living environment could bring valuable 

benefits to counteract all these effects induced by such common stress sources. Music therapy, for 

instance, is an approach known for helping enhance psychological and physiological relaxation [256]. 

These methods are not only suitable to stifle or silence external noises, but also for rehabilitation 

purposes. 
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A way of ascertaining the effects that these different auditory stimuli can have in our health is 

based on the analysis of the nervous system balance. This can be achieved with the collection of real-

time physiological data by using biomedical sensors. This physiological data provides information 

about the nervous system balance, such as the sympathetic branch activity, associated with stress, 

anxiety or excitement, and parasympathetic activity, associated with relaxation and low heart rate 

levels [253]. The assessment of the ANS balance is generally done through heart rate variability (HRV) 

analysis, or pulse rate variability, which is based on the study of the time variation between two 

consecutive heartbeats. Such information is derived from cardiovascular signal analysis that can be 

achieved through many different techniques. 

The biomedical devices used for such monitoring in an AAL scenario, for instance, are based on 

non-obtrusive and easy-to-use techniques. The photoplethysmography (PPG) technique has proven to 

be a great alternative to the standard electrocardiogram (ECG) when considering HRV analysis [257], 

[258]. For example, long-term monitoring of cardiac activity using ECG can be quite discomfortable, 

since wet electrodes, or Ag/AgCl electrodes, must be used, leading to possible skin irritation after 

several hours of use. Moreover, the multiple lead wires for connecting the 3 or more electrodes of the 

ECG can affect the daily activities of an individual, and affect stress levels [246].  

4.2.2. Study contributions 

This study addresses the utilization of the developed physiological monitoring system suitable for AAL 

systems, and mentioned in Chapter 3, as well as the exploration of short-term effects of music and 

noise sounds on HRV. More specifically, it intends to: 

1. Validate the wearable sensor node based on the PPG acquisition technique for real-time 

monitoring of HRV parameters.  

2. Perform a preliminary study of the influence of music sound stimulation on HRV of healthy 

subjects in order to verify if this stimulus can indeed be beneficial to the user’s well-being. 

3. Provide a comprehensive study of the effects of short duration noise as well as different music 

types on the balance of the nervous system to investigate the possible use of these methods 

to reduce stress levels.  The addition of time-frequency analysis-based processing and 

electrodermal activity acquisition (EDA) to assess the impact of these different stimuli will be 

considered. 

4. Estimate stress levels caused by auditory stimuli through the implementation of machine 

learning algorithms. 

 

 

 



 

4.2.3. Methods 

A total of 17 participants (6 females and 11 males) aged 23 to 55 years old (mean age: 34.8 ± 13 years) 

were enrolled in this study. A preliminary study was conducted in January of 2022, and a more 

comprehensive study was conducted between August and September 2022. Participants were enrolled 

after informed consent and were briefed about the study's objectives and methods. They had no 

health issues and did not ingest alcohol or caffeine all day long. They were seated in a relaxed upright 

position and under spontaneous breathing during all experimental sessions. In these studies, the 

developed wearable PPG sensor node (1st prototype) was used for HRV monitoring, alongside a 

Shimmer3 ECG sensor for validation purposes. Additionally, the Shimmer3 GSR+ unit was used for 

measuring electrodermal activity. The positioning of the ECG electrodes was mentioned in Chapter 3. 

The sensor from the PPG wearable sensor node was placed on one hand’s index finger, and the GSR 

electrodes were placed on the index and middle finger of the other hand. 

The study consisted of two distinct phases: a music selection phase and the experimental session. 

The first phase took place four months before the start of the experimental sessions. In this part, all 

participants were assigned a short duration listening experience of five song excerpts, approximately 

60 seconds in length, from ambient, classical, and metal music genres.  

The choice of songs involved a selection criterion that was based on music tempo, measured in 

beats per minute (bpm). This term is used to designate the rhythm and speed of music and was 

considered since it is one of the most important characteristics of a musical piece, and which may 

influence a person's emotional state.  

For classical music, five music pieces with a medium tempo of 76-108 bpm (Andante) were 

selected. The fast-paced metal music pieces were aimed for having a faster tempo of >160 bpm 

(Presto). This selection criterion was not considered for ambient music. After each session, participants 

completed a questionnaire involving the following questions, rated from one to five: 1) How much did 

you like this music example; 2) How familiar was this music to you; 3) How calming was this music 

sample for you. At the end of each music genre demonstrations, participants chose the music they 

preferred, out of those five. The classification of the preference for each music piece can be seen in 

Figure 4.15.  
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FIGURE 4.15. Classification in terms of preference of each music piece for the three musical genres. 
(Music pieces with 0% of preference are not depicted). 

This listening experience and music selection was to ensure that the majority of the participants 

enjoy the music considered in the experiments. Listening to music that one dislikes can evoke negative 

emotions and create an aversive experience. This can result in feelings of discomfort, frustration, or 

annoyance. In this way, a consensus was reached between all parties involved and the songs selected 

for each musical genre were those that were most voted for by the participants.  

Figure 4.16 shows the results of the above mentioned questionnaire for the selected musics, in 

order to obtain the participants' feedback regarding their reactions and emotions felt while listening 

to the music piece. At this preliminary stage, the subjective feedback demonstrates that ambient music 

induced a greater sense of relaxation for all participants compared to classical music. It is also possible 

to verify a greater preference for the ambient and classical music than for the metal music, which 

seems to be the less appreciated musical genre among the others involved. Moreover, this genre 

provided the lowest sense of relaxation, as expected. In the end, the preference for each music piece 

is due to the positive effects it induces. In the case of ambient and classical music, participants chose 

the music piece that induced more relaxation, while in metal music, the most important factor was the 

familiarity with the music. 

 
FIGURE 4.16. Results from the subjective feedback questionnaire for the preferred music pieces 



 

Following the music selection phase, the experimental session involved a total of six exposures to 

auditory stimuli, as represented in the experimental schedule in Figure 4.17. The first session was a 

silent or “no-music” session without any auditory stimulus. This was done, not only to stabilize the 

heart rate, but also to obtain baseline HRV values.  

 

FIGURE 4.17. Experimental schedule for the comprehensive study on the influence of stress noise and 
three different music genres on HRV 

During all sessions, participants watched a continuous calm video, simulating a space travel, 

transmitted by a television placed 1.40 m away from their seats (Figure 4.18). The surrounding 

environment was kept dark throughout the duration of the experiment, eliminating as much as 

possible any additional stimuli other than the auditory. 

The sessions that followed the “no-music” session were the stress noise sessions. First, a sound 

was emitted at a frequency of 200Hz by two speakers positioned in front of the participant, at about 

1.60m. The sound was emitted only for 3 min, to prevent possible hearing damage. The physiological 

data continued to be collected for the remaining 2 min, making in total 5 min of PRV measurements. 

The same happened with the higher frequency 500 Hz noise session, which took place 2 min after the 

end of the previous session. In the following session, white-noise was emitted for 5 min. The stimulus 

sessions following stress-noise were musical stimulus sessions.  

 
FIGURE 4.18. Setup of the experimental scenario: two speakers on each side, subwoofer and a TV in 
the center   
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Before starting the experimental sessions, an analysis of the intensity levels of the sound emitted 

by the speakers was made. A sound level meter, Tenma ST-95, was used for this purpose. This device 

has a measuring range from 35dBA to 130dBA, works with frequency ranges from 31.5Hz to 8 kHz, and 

features 3dBA accuracy, with 0.1dBA resolution, as well as Bluetooth communication capabilities. The 

device was placed at the position where the participants would sit. This was done to measure sound 

pressure levels approximately the same way as the human ear and determine the most correct sound 

level for the experiment. The maximum, minimum and average dBA measured during all sound stimuli 

are displayed in Table. 4.7. 

TABLE 4.7. Maximum, minimum and average sound levels measured during each sound exposure 
sessions 

Session Max (dBA) Min (dBA) Avg (dBA) 

200 Hz 65.2 46.7 59.8 
500 Hz 72.5 46.7 69.4 

Ambient Music 75.3 49.7 64.3 
Classical Music 77.5 46.1 60.7 

Metal Music 76.6 62.8 72.0 

Figure 4.19 displays the real-time measurement of dBA during the five minutes of ambient, classical 
and metal music sessions. 

 
FIGURE 4.19. Measurement of sound levels (dBA) during ambient, classic and metal music session 

As in the first study, the order in which the musical genres were emitted was: ambient music 

characterized by nature sounds and a harmonious background melody (Relaxing Music with Nature 

Sounds – Waterfall, from Youtube [259]), followed by classical music (The Blue Danube, Op. 314, by 

Johann Strauss II) and finishing with metal music (Creeping Death, Metallica).  



 

A two-minute break was taken between all stimulus sessions. During these breaks, a perceived 

stress scale questionnaire was given to each participant as a mean of assessing their subjective 

evaluations of comfort feeling and stress levels. From a scale ranging from one to five, where one 

expresses no agreement with that statement, three is a neutral decision and five corresponds to total 

agreement, the following questions were made: 1) How happy were you during this period; 2) How 

stressed did you feel during this period; 3) How calm did you feel during this period; 4) How sad were 

you during this period. The results will be shown in sub-section 4.2.5.  

4.2.4. Wearable PPG sensor node validation 

The first goal of this study was to compare the time-domain PRV analysis computed by the developed 

wearable sensor node with the HRV obtained with a 5-lead ECG monitor. In this section, the PRV data 

collected in the three different music stimulation sessions is analysed. Each device signal acquisition 

technique recorded 21 samples in total. Mean values and standard deviation among the different PRV 

parameters for each device were calculated and are presented in Table 4.8. Pearson’s correlation 

coefficient was employed to measure the degree of correlation between the values obtained with the 

developed node and the validation node during sessions.   

TABLE 4.8. HRV during rest periods: Values obtained with the developed wearable PPG sensor node 
and the ECG validation node 

HRV  

Time-Domain Analysis 

Correlation (r) Mean ± SD 

Developed Node (PPG) Validation Node (ECG) 

Mean HR (bpm) 82.9 ± 5.7 79 ± 4.2 0.936 
Max HR (bpm) 100.1 ± 15.2 100.2 ± 7.9 0.386 
Mean RR (ms) 721 ± 45.7 765 ± 39.9 0.931 
SDNN (ms) 93.4 ± 52.7 66 ± 5 0.837 
RMSSD (ms) 58.6 ± 31.8 43.1 ± 20 0.838 
NN50 49.9 ± 37.6 53.8 ± 50 0.635 

 

The Pearson’s correlation plots of RMSSD and mean HR values are presented in Figure 4.20. During 

all sessions, the developed sensor node showed statistically significant correlations (r > 0.7, p < 0.05) 

for mean HR, mean RR, SDNN and RMSSD variables. However, maximum HR showed minimal 

correlation (r = 0.386), which could be motivated by incorrect readings from the PPG sensor, either 

due to light interference or caused by hand movements. 

All the analysed time-domain PRV indices were correlated, apart from the maximum HR and NN50, 

which presented mean differences with the PRV indices from ECG. These results confirm that the use 

of the developed sensor node based on PPG is valid for HRV analysis during rest for most metrics. 
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FIGURE 4.20. Pearson's correlation of RMSSD and mean Heart Rate obtained from the developed 
node (PPG) and the validation node (ECG). 

4.2.5. Experimental Results and Discussion 

This sub-section addresses the results of the comprehensive study on the effects of stress noise and 

musical stimulation on physiological functions of the human body, as well as an estimation of stress 

induced by auditory stimulus based on the implementation of ML algorithms. 

A. Effects of Stress Noise and Musical Stimulation on HRV 
The preliminary study, which took place in January 2022, allowed us to observe an influence of musical 

stimuli on the cardiac variability and, consequently, on the autonomic nervous system, as reported in 

[260]. This more comprehensive study, that involved the implementation of a new experimental 

protocol as depicted in Figure 4.16, took place between the months of August and September. The 

average temperature of the room where the experiments were carried out was 23 °C. All participants 

went through the same sequence of sessions. One of the participants presented a very noisy PPG signal 

at the 200 Hz session which did not allow a correct analysis of the HRV and therefore the corresponding 

measurements were not considered for this specific case. 

In Table 4.9, the results of the perceived stress questionnaire associated with each participant 

after each stimuli session are presented. In this way, a subjective evaluation of the subject's comfort 

feeling, and stress levels was considered, which will later be correlated with the objective 

measurements collected by the biomedical sensors. In the stress noise sessions, most of them had a 

neutral evaluation. However, the high-frequency noise session (500Hz) was the one presenting the 

worst results in terms of stress felt by the participants, which on average felt quite stressed and 

unhappy during this session. In the opposite way, and as expected, the ambient music session was the 

one that most stimulated feelings of comfort and happiness. 



 

Similarly, classical music appeared to cause no level of discomfort to most participants. 

Interestingly, metal music also had a very positive rating regarding the feeling of comfort, with most 

of them, except for volunteer 5 (V5) and 10 (V10), not experiencing stress levels associated with this 

session.  

TABLE 4.9. Results of the perceived stress questionnaire for each session (Mean ± SD) 

200 Hz 500 Hz White Noise Ambient Music Classic Music Metal Music 

1 - How happy were you during this period? 

3 ± 0.7 2 ± 0.8 3 ± 0.7 4 ± 0.9 3 ± 1.8 3 ± 1.4 

2 - How stressed did you feel during this period? 

3 ± 1.1 4 ± 0.6 3 ± 1 1 ± 0.6 2 ± 1.7 2 ± 1.2 

3 - How calm did you feel during this period? 

3 ± 1.2 2 ± 1.2 3 ± 1.2 4 ± 0.7 3 ± 1.7 3 ± 1.3 

4-How sad were you during this period? 

2 ± 0.9 2 ± 0.9 2 ± 1.2 2 ± 1.2 3 ± 1.9 2 ± 0.8 
 

This explains in advance the good receptiveness of this participants group to various styles of 

music. Looking at the individual results of the questionnaire, only two of the participants were unhappy 

during the classical music session. Similarly, another two participants reported not enjoying the metal 

session, feeling somewhat stressed and unhappy (e.g., V7 and V10). These results demonstrate a 

diverse range of musical preferences in the group, consistent with the experimental design and its 

purpose. 

A summary of the mean values of HRV parameters obtained for all the sound stimulus sessions is 

presented in Table 4.10. To evaluate the impact of noise sounds and different types of music on the 

ANS, the PRV analysis comprises time-domain, frequency-domain and non-linear parameters. A t-test 

method was applied to measure statistically significant differences on PRV results between the 

baseline session, also referred as “no-music”, with all the other sessions. A p-value of ≤ 0.05 was 

considered statistically significant. 

 

TABLE 4.10. Mean of the PRV parameters for all sound stimulation sessions and t-test results 

HRV No 
Music 

200 
Hz 

p - 
value 

500 
Hz 

p - 
value 

White 
Noise 

p - 
value 

Ambient 
Music 

p - 
value 

Classic 
Music 

p - 
value 

Metal 
Music 

p - 
value 

Time-domain analysis 
Mean 
PPi(ms) 776 780 (0.30) 778 (0.45) 753 (0.14) 772 (0.406) 758 (0.14) 767 (0.35) 

SDNN (ms) 107 99 (0.32) 99 (0.10) 103 (0.268) 108 (0.477) 99 (0.23) 94 (0.18) 
SDSD (ms) 162 139 (0.22) 138 (0.01) 143 (0.049) 136 (0.066) 140 (0.11) 123 (0.05) 
NN50 240 221 (0.36) 234 (0.37) 237 (0.435) 232 (0.348) 227 (0.29) 212 (0.20) 
PNN50 62 57 (0.40) 61 (0.38) 60 (0.392) 59 (0.315) 57 (0.18) 54 (0.18) 
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RMSSD 
(ms) 

152 130 (0.20) 131 (0.02) 135 (0.051) 145 (0.391) 140 (0.25) 113 (0.03) 

Mean HR 
(bpm) 80 79 (0.25) 79 (0.44) 82 (0.185) 80 (0.471) 81 (0.21) 80 (0.41) 

Max HR 
(bpm) 

128 131 (0.36) 120 (0.29) 126 (0.375) 119 (0.138) 119 (0.11) 122 (0.24) 

Min HR 
(bpm) 53 50 (0.18) 52 (0.48) 53 (0.432) 54 (0.366) 53 (0.48) 52 (0.38) 

Frequency-domain analysis 
LF (ms2) 1738 1826 (0.38) 2581 (0.12) 2625 (0.212) 2862 (0.143) 2627 (0.18) 2254 (0.287) 
HF (ms2) 2432 2238 (0.41) 2149 (0.16) 2290 (0.327) 3881 (0.225) 3160 (0.27) 2009 (0.32) 
LF/HF 0.91 1.23 (0.17) 1.20 (0.03) 1.19 (0.119) 1.02 (0.272) 1.06 (0.28) 1.41 (0.11) 
Non-linear analysis 
ApEn 1.178 1.025 - 1.156 - 1.039 - 1.174 - 1.118 - 1.073 - 
SampEn 1.725 1.540 - 1.670 - 1.531 - 1.681 - 1.503 - 1.441 - 

The low-frequency noise exposure of 200 Hz did not appear to cause significant alterations on 

PRV, although, on average, an increase of LF/HF ratio was measured between this stress noise session 

and the “no music” session. The RMSSD decreased in both low and high-frequency noise exposure 

sessions, though the effect was not statistically significant.  

 As for the white noise exposure scenario, the average HR and LF components were the highest 

among all stress noise exposures, as seen in Figure 4.21. Significant differences were also found for 

SDSD and RMSSD. The highest value of ApEn was denoted for the “no-music” session, which means 

that the complexity of PRV was higher during a period where no external stimuli was induced.  

 
FIGURE 4.21. Mean heart rate and mean LF and HF component for all sound exposure sessions 

 

Stress recovery seemed to happen during ambient music exposure, even though the session took 

place two minutes apart from the stress noise sessions. During the ambient music scenario, the LF/HF 

ratio values decreased. The HF power was the highest among all sessions. This indicates a 

parasympathetic recovery associated with a relaxing music scenario involving sounds of nature and 

harmonious melodies, and it comes in line with the sensations of calm and happiness that most 

participants felt during this period, as reported in the questionnaire.  
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During classic music exposure, the LF/HF preserved the lowest values following ambient music 

and "no-noise" sessions. Apparently, the values recorded with both ambient and classical music seem 

to indicate a feeling of comfort in general, when compared to the other auditory stimulus sessions. 

The PRV decreases to its extent during metal music exposure. The LF/HF reached the maximum values, 

and SDSD and RMSSD decreased significantly. Even though most volunteers did not feel stressed while 

listening to this type of music, the balance of the nervous system was evidently altered, and there was 

a higher prevalence of LF power over HF power when compared to all other sessions, including stress 

noise. The results observed here somehow resemble the results obtained by Nakajima et al. [71], who 

also observed an increase in LF/HF by stress-inducing noise, in this case, scratching board sounds.  

Figure 4.22. shows the individual results for LF/HF ratio values for 10 volunteers. Most of the 

volunteers who said enjoying the metal type of music showed higher LF/HF values when compared to 

the other musical stimulus sessions. Only two of the ten volunteers reduced the ratio between the LF 

and HF component. The beforementioned volunteers were already well-acquainted with the music, so 

its melody, harmony and rhythm were quite familiar, which may explain the increase in the HF 

component. This comes in line with the observations made by Kirk et al. [55] regarding having 

familiarity with the music. It is possible that having a taste for that music genre activates the 

sympathetic nervous system since a certain excitement can be experienced when listening to a melody, 

namely a fast-paced music like this one. As expected, classical music would elicit a greater presence of 

the sympathetic system when compared to ambient music, for the same reasons stated above, since 

70% of the people who said having felt happiness and calm during this music presented higher LF/HF 

values. This could help to prove the hypothesis that the LF component does not reflect sympathetic 

and vagal activity, which has been considered in several studies, but it can possibly represent both 

sympathetic and parasympathetic branches of the nervous system.  

 
FIGURE 4.22. Individual LF/HF values for all sound exposure sessions 
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Regarding noise stress, all volunteers who confessed a very high feeling of stress and discomfort 

in the first 200 Hz session (e.g. V6, V8) showed an increase of the LF component in comparison to the 

previous silent session. Regarding the 500Hz session, only two participants showed lower values of LF 

compared to the initial session.  

B. The Effects of Music Tempo in the Perception of Classic and Metal Music Genres 

The characteristics of the music itself have a strong impact on its perception and the emotional effects 

it may bring to its listener. These characteristics can be based on the tempo, rhythm, pitch, timbre, and 

melody of the music piece. In addition to the study that was conducted, we wanted to find out whether 

the sympathetic activity of the ANS was stimulated by the different music tempos, or by the genre 

itself. Thus, an additional experiment which features exposure to classical and metal music genres with 

the same tempo, preceded by a 5-minutes “no-music” period, was conducted. The study had the 

participation of 6 of the 17 volunteers that were part of this experiment. Both classic and metal music 

pieces were selected to have a fast-paced tempo (160 bpm). The music pieces that follow these criteria 

were Creeping Death, by Metallica for the metal session, and Symphony No.45 in F-Sharp Minor, by 

Joseph Haydn for the classic music session. The HRV measurements obtained are present in Table VI.  

TABLE 4.11. Mean of the PRV parameters for the three experimental sessions 

HRV No Music Classic (160bpm) Metal (160 bpm) 
Time-domain analysis 
Mean PPi (ms) 835 808 823 
SDNN (ms) 117 84 97 
SDSD (ms) 126 87 105 
NN50 167 151 136 
PNN50 46 40 37 
RMSSD (ms) 126 87 105 
Mean HR (bpm) 74 76 75 
Frequency-domain analysis 
LF (ms2) 4297 1960 2151 
HF (ms2) 3208 1589 1773 
LF/HF 1.2 1.3 1.5 
Non-linear analysis 
ApEn 1.115 1.199 1.083 
SampEn 1.461 1.665 1.486 



 

The individual results of LF/HF ratio for the 6 volunteers are presented in Figure 4.23. There was 

a decrease in LF/HF following the classic music exposure. Moreover, when comparing both music 

sessions, the average LF/HF was higher for the metal music relative to classic music, even though the 

average tempo of both music genres are equal. Due to the variations in musical genres and their impact 

on the autonomic nervous system, exposure to metal music was likely to result in a larger LF/HF ratio 

than exposure to the classic music piece, as we verified in the previous study. The metal music piece 

is a fast-paced and intense heavy metal song that would stimulate the sympathetic nervous system 

most likely.  

The classic music piece, on the other hand, is distinguished by its contrasting sections and 

variations in rhythm, dynamics, and tone. While it may still have an influence on the autonomic 

nervous system, it is likely to be less intense and stimulating than the metal music. 

As mentioned earlier, the effect of music on the autonomic nervous system and PRV varies widely 

across individuals and is influenced by factors such as mood, stress levels, and personal preferences. 

With this experiment, we can conclude that the activation of the sympathetic branch and the possible 

appearance of some type of stress is mostly due to music genre itself, rather than the tempo. 

 
FIGURE 4.23. Individual LF/HF values for a music session of Classical and Metal music genres with 

160bpm tempo 

C. Implementation of Time-Frequency Analysis for HRV Assessment 
An additional signal processing technique based on STFT was considered. We wanted to test an 

alternative way to obtain more valuable information about the ANS modulation over time, since the 

PSD computed by the FFT does not provide information about power distribution across a given period. 

The STFT technique allows to separate the signal into its constituent frequency-components and 

observe how they change over time. 
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Since PRV contains relevant information about the functioning of the nervous system through the 

analysis of both frequency and time domain information, STFT is used mostly to quantify the spectral 

properties of PRV, such as the power spectral density and the power distribution along the different 

frequency bands. In this way, the low frequency components of the PRV (0.04 to 0.15 Hz), associated 

with sympathetic activity, and the high frequency components (0.15 to 0.4 Hz), associated with 

parasympathetic activity, can be quantified by analyzing the power distribution along the different 

frequency bands of the STFT spectrogram. In this way, it is also possible to observe the activity of both 

branches of the ANS throughout a period. 

We employed STFT to estimate the spectro-temporal variations of the VLF, LF and HF components 

of the PPi series for the different music stimulation sessions. LabVIEW 2022 Q3 was used for this 

purpose. The STFT was calculated for the whole range of the music session, which was 300 seconds 

long.  Figure 4.24 shows the spectrograms obtained for V10 for the following sessions: No-music, 

Ambient, Classic and Metal music session, using a Hanning type window with a length of 64s. The FFT 

spectrum is also represented. This participant reported feeling a higher level of stress and discomfort 

during exposure to metal music, since it was an unappreciated music genre. On the other hand, the 

subjective feedback showed that the exposure to classical music brought a higher level of relaxation 

and happiness, for being a music genre quite appreciated by the participant.  

 
FIGURE 4.24. STFT spectogram analysis of the PPi time series for V10 during no-music, ambient, classic 
and metal music sessions (Hanning window, 64s window length). An image binarization of the 
spectrograms was applied to measure the number of white pixels related to higher spectral power 
density in each frequency band (VLF, LF and HF). 

 



 

The spectrograms show a clear difference between Metal and Classic music exposure. Visually, it 

is possible to observe a great contrast in the low frequency band between these two spectrograms: 

the STFT referring to metal music has higher power density levels than in the classical music one.  

To convert these observations into objective metrics, we considered the following procedure: first, 

the quantification of power distribution in each frequency band, which is used to reflect the level of 

activity of the parasympathetic and sympathetic branches of the ANS, was performed using an image 

processing technique with MATLAB R2022b. The technique consisted in converting the spectrogram 

to a binary image, exemplified in Figure 4.24. After this conversion, it is possible to visualize the more 

significant spectral power densities as white pixels (“1”) and the less significant as black pixels (“0”). A 

global image threshold of 0.27 was used for the image conversion. The threshold value is proportional 

to the mean of the power scale of the spectrogram. In this way, we guarantee that the binarized 

spectrogram accurately reflected the presence or absence of valuable frequency components, 

regardless of the differences in their relative strength. 

Then, a segmentation of the binary spectrogram image into the different frequency bands: VLF, 

LF and HF, was made. For each band, the number of white pixels present in that segment was 

calculated to obtain a numerical value of the power spectral differences between each frequency 

band. For this participant, the values obtained for each frequency band for the metal music session 

are shown in Figure 4.24. 

A comparison between the power distribution in the binarized images and the LF and HF power 

values obtained using FFT are presented in Table 4.12.  

TABLE 4.12. Mean of the PRV parameters for the four experimental sessions calculated using the 

STFT  and  FFT objective measures 

PRV 4. No Music Ambient Classic Metal 

Power distribution in binarized STFT spectrogram 

LF (nº white pixels) 5.07e+03 6.68e+03 5.29e+03 5.35e+03 

HF (nº white pixels) 1.20e+04 1.03e+04 6.77e+03 5.72e+03 

LF/HF 0.42 0.65 0.78 0.94 
Frequency-domain analysis based on FFT 

LF (ms2) 1738.00 2862 2627 2254 
HF (ms2) 2432 3881 3160 2009 

LF/HF 0.91 1.02 1.06 1.41 
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For instance, by analyzing the power distribution of the binarized STFT spectrogram, the LF/HF 

ratio was 0.42 for the no-music session, indicating a greater degree of parasympathetic activity. In the 

case of metal music, the ratio was 0.93, therefore indicating greater sympathetic dominance. Although 

the values obtained from the two methods differ, as different mathematical algorithms are being used 

by each method, the general pattern of LF and HF power distribution across the four conditions is 

relatively similar, indicating that the effects of different types of music on the ANS balance are 

consistent regardless of the method used for analysis. 

D. Electrodermal activity acquisition for assessing the impact of different musical stimuli 

GSR signals were collected to measure the intensity of emotions felt in response to the music listened 

to during each session. Such emotions are difficult to differentiate from being positive or negative, 

e.g., stress, thus, only the emotional stimulation caused by the music will be interpreted. Since the skin 

conductance is modulated by the sympathetic activity of the ANS, it will be possible to determine with 

more precision the instants in which it had more activity. Since the electrical conductivity of the skin 

increases with the emotional arousal, in a reciprocal way, the increase of the skin resistance will 

indicate the opposite.  

The following figures show the GSR signals of one of the volunteers, V7. During the musical 

stimulus sessions, V7 presented greater LF/HF alterations according to the different types of music 

when comparing to the other volunteers. In this way, a comparison will be made between these 

variations, marked by an increase in the LF component, with the changes in the skin conductivity. In 

Figure 4.25 to Figure. 4.27 the GSR signal and its phasic component are represented. The phasic 

component allows to see the fast variations occurring in the GSR signal, referred as skin conductance 

responses (SCR). In these figures, we present the filtered GSR signal and the phasic component of V7 

across the full extent of the ambient, classical and metal music sessions respectively. The melodic 

range spectrograms of ambient, classical and metal music, respectively, are also shown. 

The melodic range spectrogram is designed to facilitate the identification of particular musically 

significant characteristics. In this way, we intend to correlate the changes of the SCR, and in turn of the 

activation of the sympathetic system, in response to the significant changes of rhythm and melody 

present in the music.  



 

 
FIGURE 4.25. GSR signal and its phasic component for volunteer V7 during Ambient Music 

 

FIGURE 4.26. GSR signal and its phasic component for volunteer V7 during Classic Music 
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FIGURE 4.27. GSR signal and its phasic component for volunteer V7 during Metal Music 

From ambient to classical music, an increase in the amount of rapid fluctuations of the skin 

conductivity was denoted in response to a greater amount of stimuli present in the Blue Danube 

classical music. It is possible to see the increase in skin conductivity according to the rhythm changes 

of the music as represented in Figure. 4.26. This indicates an activation of the sympathetic system 

upon the introduction of important musical events. If this is a music piece that the participant enjoys, 

as was the case, then these sympathetic system changes reveal positive emotions rather than 

emotions associated with stress. In an AAL scenario, this positive association can improve the person's 

well-being through the introduction of music sounds of their musical taste. When targeting patients 

with dementia, namely Alzheimer's, the introduction of these positive stimuli can bring many positive 

benefits - both emotional and behavioural. How these stimuli affect the patient may be analysed 

through the use of these methods.  

In Figure 4.27 it was possible to verify a greater stimulation of the sympathetic nervous system by 

the fast-paced metal music. The melodic spectrogram presents a larger quantity of important events 

demarked by heavy instrumental parts  and the phasic component of the signal presents many sudden 

alterations in the electric conductivity of the skin, which reveals more changes in autonomic arousal. 

Therefore, it was possible to associate the changes in the LF component with the variations in the 

electrical conductivity of the skin throughout the different types of music. 



 

D. Estimation of Stress Induced by Auditory Stimulus based on Machine Learning Algorithms 

There are still quite a few research works that are intended to perform automatic music selection 

based on the user’s physiological response [64], [261]. Having assessed and evaluated the impact of 

different musical stimuli on HRV measured with the wearable sensor, future implementations of the 

proposed system are aimed to automatically introduce or change music genres in the surrounding 

environment by the means of a speaker or wearable audio devices, according to the user’s 

physiological state and PRV at that moment. This aims to help change emotional states and reduce the 

feeling of stress of AAL inhabitants, thereby improving their well-being. For that purpose, some 

machine learning algorithms best suited to deal with small datasets were tested. A set of physiological 

data from 10 participants containing PRV measures for all auditory stimulus sessions was used.  A total 

of 60 instances with 12 features (mean PPi, SDNN, SDSD, NN50, PNN50, RMSSD, mean HR, maximum 

and minimum HR, LF, HF and LF/HF) and a binary target was considered at first. The target consists of 

the subjective evaluations given by each participant in the questionnaire concerning their emotional 

state or stress felt during a given session. As preprocessing steps, data normalization and feature 

selection were applied, to discard irrelevant features. In this way, only five out of twelve features were 

used in the training process of the algorithms. As a binary classification problem that aimed to classify 

between “feeling stress” or “not feeling stressed” four different machine learning algorithms were 

considered: RF, DT, SVM and KNN. All classifiers were implemented in Python using the Scikit-learn 

machine learning library. A cross-validation technique was used to train the algorithm, with 4 folds in 

total. The 4-fold cross validation achieved better classification results when compared with other 

values of k. The performance metrics obtained for the models are presented in Table 4.13. 

TABLE 4.13. Accuracy, precision, F1-score and recall values obtained for the four classification 
algorithms in a 4-fold cross validation 

Evaluation 
Metrics RF DT SVM KNN 

Accuracy 71.18% 69.24% 56.34% 69.95% 

F1 0.516 0.571 0.108 0.514 

Precision 0.571 0.551 0.186 0.632 

Recall 0.487 0.635 0.087 0.426 
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The Random Forest was the one giving higher accuracy results, having achieved 71.18% accuracy 

when predicting the feelings of stress based on the PRV features. Decision trees and k-NN presented 

similar results, with 69.95% accuracy. The poorest results were obtained with SVM, which only 

achieved an accuracy of 56.34%. This was expected since it is an algorithm that does not perform well 

when the dataset contains overlapping targets, which was the case. Because most of the PRV 

parameters did not have significant differences between the subjective classification of having or not 

having feelings of stress, the algorithms will hardly achieve more desirable results. To improve the 

accuracy results and overcome the limitations encountered in this classification problem, a greater 

number of volunteers and an improvement of the hyper parameters of the machine learning 

algorithms will be considered in the future work. 

The results presented in this study provide several advantages that make significant contributions 

to the field, such as the development of an innovative biomedical wearable system for cardiac 

assessment and the analysis of the autonomous nervous system balance based on HRV. This healthcare 

focused IoT system was designed to be perfectly suited for implementation in smart homes and 

ambient assisted living environments. The development of the hardware, software for HRV analysis 

and data visualization, as well as the implementation of ML algorithms for classification of the stress 

state derived from musical stimulation, make this system stand out from others reported in the 

literature. Moreover, an alternative technique was used for analysing the activity of the nervous 

system and quantifying the spectral power density of high and low frequencies over time, using STFT 

spectrograms and image processing techniques. This approach sets this work apart from others that 

often rely on the analysis of the nervous system balance based on the quantification of frequency 

domain parameters based on FFT. It is important to note that the tests were conducted in an 

experimental setting that closely resembles a home environment, providing more real-world relevance 

and practicality. 



 

4.2.6. Remarks 

The relations between musical stimuli and noise stress and autonomic nervous system balance 

were studied, providing interesting results. A preliminary study phase to ascertain the effects of music 

sound stimulation based on three different music genres – ambient, classic, and metal - on PRV in 

healthy volunteers was carried out. It was observed that there is an increase of sympathetic activity 

during metal music session, when compared with classical music. The preliminary results showed that 

further studies were needed with the inclusion of a no-music rest period, a stress inducing experience 

based on unwanted noise sounds exposure, an extended number of volunteers and the monitoring of 

additional physiological parameters. In this way, a more comprehensive study was made with ten 

volunteers, which involved short-duration sound noise stimulation – 200Hz, 500Hz and White Noise - 

as well as musical stimulation. New physiological parameters characterized by skin conductivity were 

acquired to better understand emotional changes that may occur during sound exposures and better 

comprehend sympathetic nervous system modulation. The findings showed that stress noise 

contributes to an increase in sympathetic activity. Ambient music, on the other hand, was shown to 

be particularly beneficial in enhancing parasympathetic activity and regulating comfort levels. 

Moreover, it was possible to conclude that the activation of the sympathetic branch and the possible 

emergence of some type of stress is mostly related to the music genre itself, rather than the tempo. 

The study also addressed the use of supervised ML classification algorithms to create a model that 

could estimate feelings of stress induced by auditory stimulus. The HRV parameters were used as 

inputs and the best results were achieved with the RF classification algorithm, with 71,18% accuracy. 

Finally, the development of a wearable wireless sensor node based on the PPG acquisition technique 

for real-time monitoring of PRV parameters in the time domain was studied and reported. Its validation 

was performed using a reference ECG smart sensor, and good correlation results for the PRV 

parameters of both devices were obtained, enabling its use in AAL scenarios. 

The study presented in this sub-chapter led to the publication of an article in a scientific journal: 

M. Jacob Rodrigues, O. Postolache and F. Cercas, (2023) "The Influence of Stress Noise and Music 

Stimulation on the Autonomous Nervous System," in IEEE Transactions on Instrumentation and 

Measurement, vol. 72, pp. 1-19, 2023, Art no. 4006819 | https://doi.org/10.1109/TIM.2023.3279881 

 

 

 

 

 

 

https://doi.org/10.1109/TIM.2023.3279881
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4.3. The Influence of Virtual Reality Serious Games on the Autonomic Nervous 

System 

4.3.1. Overview 

The acquisition of vital signs throughout the practice of physical exercise has served as an important 

measure that follows the subject's physical performance avoiding accidents related to high level of 

exercise intensity.  

Since it is possible to have a robust assessment of a patient's health status using wearable sensors, 

its use during physical exercising has been extensively studied. In the current context, and due to 

COVID-19 pandemic and the corresponding containment measures adopted during 2021, the year 

where this study was made, the practice of physical exercise at home was especially valued. Moreover, 

physical therapy sessions were suspended in clinics due to coronavirus lockdown, so the patients 

requiring physical training (e.g., limb strength, resistance, body balance) should practice rehabilitation 

exercises at-home. In this context, exergaming – a system that combines physical exercise with digital 

gaming – has been shown to bring positive benefits to a patient’s physical and cognitive conditions, 

and help individuals maintain the recommended levels of physical activity. In addition, virtual reality 

(VR) serious exergames that are focused on physical rehabilitation may constitute a complementary 

tool of physiotherapy sessions. The highly engaging and immersive scenarios help patients to stay 

motivated while executing rehabilitation exercises imposed by the game. 

4.3.2. Study Contributions 

This study addresses the monitoring of HRV changes in adults while experiencing VR serious gaming of 

different time duration and exercise intensity. Moreover, the application of artificial intelligence 

algorithms to classify the VR serious game intensity levels is also considered.  

More specifically, the present study sought to investigate: 

(1) The variance in HRV indices during a VR rehabilitation serious game considering different 

intensity levels.  

(2) The variance of HR levels characterized by a more complex gameplay session of different time 

durations.  

(3) How artificial intelligence methods can be used to estimate the different intensity levels of the 

game based on wearable sensor data and subjective measures. 



 

4.3.3. Methods 

A VR serious game specifically tailored for upper limb rehabilitation was used for this investigation. 

This system has been developed and reported by Postolache et al. [262]. It was developed using the 

Unity3D game engine and relies on a Microsoft Kinect platform for real time detection of the upper 

limbs’ joint angles, thus allowing the user to interact with the VR scenario. The Kinect platform has 

been shown to be a highly reliable rehabilitation platform, as it can accurately measure upper and 

lower limbs’ joint angles during rehabilitation exercises [21] – [23]. The virtual scenario of this game is 

expressed by a virtual farm. The main objective of this game is to pick-up fruits placed randomly at 

different heights from surrounding trees and shrubs, which assures different ranges for the upper limb 

motion. The objects can be reached by left hand, right hand, or both, depending on the chosen game 

settings for the training session. The upper limb movements executed by the player are detected by 

the Kinect platform and reproduced in the game’s avatar (Figure 4.28).  

The game has two different gameplay modes: a) high-angles (90°-180°), with apples being placed 

on trees and 2) low-angles (0°-90°), with raspberries being placed on shrubs. Different difficulty levels, 

namely higher or lower intensity, can be implemented based on the gameplay mode, the movement 

speed of the avatar and the number of fruits to be harvested. Different audio-visual stimuli are 

available during gameplay to motivate players, including different immersion levels, such as farm 

sounds, animals, and other elements, and performance feedback, like a positive sound when a fruit is 

picked.  

 
FIGURE 4.28. Gameplay of the used VR serious game for upper limb rehabilitation 
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The participants of this study were 6 healthy adults, 3 males and 3 females aged 24.6 ± 1.9 years 

old, weighting 64 ± 16 kg, with heights around 176 ± 9 cm and body mass indexes (BMI) 20.3 ± 3 kg/m2. 

All participants enrolled in the gaming sessions after informed consent. 4 volunteers were already 

familiar with the game mechanics and the Kinect platform. Details regarding the purpose and 

procedures involved in this study, as well as an explanation of the game’s instructions and objectives 

were given before the gameplay session. A Borg rating of perceived exertion (RPE) scale was used as a 

subjective measure to assess exercise intensity during each game session, along with a Subjective Units 

of Distress Scale (SUDS) with a scale of 0-100 for measuring the level of distress and anxiety felt during 

each game session. 

The participants enrolled in two sessions of this serious exergame. Each session presented 

different difficulty/intensity levels. The first was based on a higher intensity level, in which game 

configurations were set for the high angles’ mode, increased number of fruits to pick up, large number 

of stimuli and the need to stay in a standing position during all gameplay (Figure 4.29 a)). The second 

session was based on a less intense level, in which game settings were set to a lower angles’ mode, 

slow-paced avatar, less stimuli and finally, participants were seated during gameplay (Figure 4.29 b)). 

 
FIGURE 4.29. Gameplay of the VR serious game in a) high angles mode and b) low angles mode. 

 Physiological measurements were collected for different experimental conditions (Figure 4.30). 

Prior to the first game session, all participants sat in a relaxed upright position under spontaneous 

breathing for 5 minutes. In order to investigate the effects that a gameplay of different time durations 

has on HR levels, participants consecutively played the higher intensity game mode 3 times: the first 

one for 1 minute, the second for 2 minutes and the third for 4 minutes.  

a) b) 



 

 
FIGURE 4.30. Experimental schedule for Session 1 (higher intensity level) and Session 2 (lower 
intensity level), and the respective HRV recording periods. 

These 3 conditions were only applied for the first session, since this is the session intended to induce 

higher exertion levels and fatigue. After the 4 minutes gameplay, participants were asked to sit and 

stay calm and silent for 5 minutes, so that physiological signals could return to a resting-state. The 

second session took place 5 minutes after the first one, and all participants were invited to sit and play 

the low-angles game mode for 4 minutes. While they were seated, 5 minutes of physiological data was 

acquired after the game ended. HRV analysis was performed during periods of 5 minutes, according to 

the standard of short-term recordings [263]. 

Physiological data was collected using an ECG sensing module based on the wearable Shimmer 3 

ECG sensor, described in Chapter 3. This compact and small module facilitates its usage as a wearable 

module without compromising the comfort and movements of the participants while experiencing the 

games. LabVIEW software was used to configure the Shimmer module and collect the ECG data, which 

was then saved in a local file for later processing. Figure 4.31 shows the VR serious game setup (high-

angles gameplay mode), as well as the placement of the AgCl electrodes (RA, RL, LA, LL and V1). 

 
FIGURE 4.31. VR serious game setup including a Kinect sensor and a physiological wearable sensor 
(Shimmer ECG unit). Positioning of the electrodes for a 5-lead ECG measurement. 
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The ECG signal pre-processing was made offline on a personal computer using an open-source Python 

library [264], as was already mentioned in Chapter 3. For this specific study, the data analysis based on 

HRV was performed with the Kubios HRV Software (ver. 3.3) [265]. Time-domain and Frequency-

domain parameters were considered in this study, as well as the quantification of the Stress Index. The 

time-domain variables included were mean R-R interval, mean HR, SDNN and RMSSD. For the 

frequency-domain analysis, low frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.40 Hz) 

components were selected. The Baevsky’s stress index (SI), a geometric measure of HRV, was also 

assessed using Kubios. 

4.3.4. Experimental Results and Discussion 

A. Variance in HRV indices during different intensity levels 
The obtained HRV values for the different experimental sessions are presented in Table I. A one-way 

analysis of the variance (ANOVA) was separately performed to compare the means and to identify 

significant changes in HRV measures between different conditions: the higher difficulty gameplay 

versus easier level gameplay; between resting-period after the gameplay or both difficulty levels, as 

presented in Table 4.14; and between rest-period (Control) and the gameplay period of each session. 

A p-value of ≤ 0.05 was considered statistically significant.  

TABLE 4.14. Mean and standard deviation (SD) of HRV parameters for each game session and one-
way ANOVA results 

HRV Parameters Control 
(Pre-Game) 

Session 1 
(Higher Intensity) 

Session 2 
(Lower Intensity) P-value 

Time – Domain Analysis 

Mean HR (bpm) during 82 ± 5 99 ± 9 86 ± 9 ≤ 0.05 
post 86 ± 10 83 ± 6 0.59 

Max HR (bpm) during 93 ± 6 112 ± 8 97 ± 9 ≤ 0.05 
post 101 ± 11 97 ± 7 0.53 

Mean RR (ms) during 737 ± 44 613 ± 51 709 ± 67 ≤ 0.05 
post 706 ± 79 726 ± 47 0.65 

SDNN (ms) 
during 

52 ± 14 
42 ± 28 47 ± 12 0.86 

post 46 ± 13 51 ± 20 0.55 

RMSSD (ms) during 49 ± 30 45 ± 51 36 ± 19 0.72 
post 37 ± 20 46 ± 34 0.62 

Frequency - Domain Analysis 

LF/HF during 2.6 ± 1.7 4.8 ± 3 5.4 ± 4 0.78 
post 2.9 ± 2 2.7 ± 1.4 0.92 

Stress Index during 8.9 ± 2 11.5 ± 4 8.2 ± 3 0.22 
 post 9.4 ± 4 8.3 ± 3 0.62 

 



 

These tests revealed that the gameplay of higher difficulty and intensity (Session 1) induced 

significant alterations on the average HR levels (p = 0.004) and maximum HR (p = 0.001) when 

compared with rest-period (Control) measures. Such significant alterations are observable in the 

boxplots of Figure 4.32. Low and high frequencies did not show any statistically significant changes (LF: 

p = 0.06, HF: p = 0.07). The HR response during the exercise of higher difficulty showed an increase of 

approximately 17 bpm for all volunteers when compared with the Control group. Moreover, the ratio 

between low and high frequencies (LF/HF) increased twice the value measured in the control group, 

which indicates sympathetic activation during the exergaming experience. 

Regarding the gameplay session of easier difficulty levels (Session 2) and the Control group 

measures, there were no significant alterations on HRV parameters. This was expected as the 

volunteers remained in a relaxed sitting position throughout the whole session. Additionally, the game 

was physically less demanding since it did not present the same levels of complexity, stimuli, and the 

need for a faster-reaction time as in the higher difficulty mode. However, although not significantly, 

LF/HF ratio seemed to be higher during gameplay of Session 2 than on Session 1. This may be explained 

by the protocol followed, as presented in Figure 4.30. The gameplay of Session 2 occurred right after 

a resting-period, whereas on Session 1 the HRV analysis during gameplay (4 minutes) was performed 

right after volunteers played the 1 minute and 2 minutes gameplay sessions. Being accustomed with 

the game’s mechanics of that specific difficulty level may also have helped to reduce stress in 

participants and decrease the sympathetic tone.  

 
FIGURE 4.32. Box plot of mean HR, LF/HF and RMSSD values for all sessions 
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One-way ANOVA on the difference between the gameplay of different difficulty levels from both 

sessions revealed significant main effects on the average HR (p = 0.04), maximum HR (p = 0.02) and HF 

power (p = 0.04). HF components were much higher during the easier difficulty game level (HF = 597 ± 

750 ms2) than on the higher intensity one (HF = 251 ± 214 ms2). Thus, parasympathetic stimulation 

decreased the cardiac output. Moreover, the stress index remained lower and almost at the same level 

as that obtained for rest periods. No significant interaction of different game complexities on RMSSD 

(p = 0.72) and SDNN (p = 0.86) and LF (p = 0.34) parameters was found.  

During the recovery phase of the lower difficulty/intensity gameplay characterized by a reduced 

limb motion range, which lasted for 5 minutes, the majority of HRV parameters – HR, SDNN, LF/HF - 

regained almost the same values registered on pre-exercise/resting periods. On the other hand, the 

higher intensity gameplay revealed lower parasympathetic recovery after the exercise. 

As a complement to the obtained physiological measures, subjective measures were also obtained 

from volunteers to assess exercise intensity and distress/anxiety levels felt during each gameplay 

session. Exercise intensity, as assessed by a Borg rating of perceived exertion (RPE) scale, was 

considered very low for both rehabilitation games (Session 1: 9.8±2; Session 2: 9±3). The volunteer’s 

impression on distress and anxiety assessed by a Subjective Units of Distress Scale (SUDS) was higher 

for Session 1 (Mean = 28.3) when compared with Session 2 (Mean = 20), which is in accordance with 

the obtained stress index levels values and LF/HF ratio variation among the different sessions.     

B. Variance of HR levels during a more complex gameplay with different time durations 
The variance of HR parameter during the more complex gameplay from Session 1 (high-angles 

gameplay mode) was compared for three different time intervals of 1 minute, 2 minutes and 4 minutes. 

This study allowed to verify if gameplays of different time periods induce changes on cardiovascular 

activity and if a longer game duration requires higher levels of effort from the subject. For an HRV 

analysis of equal time segments, the last 1 minute of each gameplay duration was considered. Only 

time-domain parameters were examined in this study phase: mean HR, RMSSD and SDNN. As a directly 

correlated measure of HF power, the RMSSD parameter gives insights of parasympathetic activity 

during these shorter-term recordings [263]. 

 



 

A one-way ANOVA revealed no significant changes on HRV parameters between 1 minute and 2 

minutes gameplay. The same was also verified between the 1 minute and 4 minutes gameplay 

duration. Heart rate levels remained constant between the three gameplay sessions (Mean=94 bpm). 

RMSSD levels got slightly higher as the gameplay duration increased, as seen in Figure 4.33 (Mean = 

21 ms for 1 min; Mean = 24 ms for 4 min). As a parameter that is correlated with HF power and 

parasympathetic activity, these values of RMSSD corroborate the explanation given in the previous 

sub-section, regarding the measurement of a lower LF/HF ratio in Session 1 when compared to session 

2. 

 
FIGURE 4.33. SDNN and RMSSD values for 3 different gameplay durations: 1 min, 2 min and 4 min 
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C. Classification of Game Intensity Levels based on Machine Learning Algorithms 
Various classification algorithms were investigated for predicting the game complexity/intensity levels 

according to the participants’ HRV. Considering remote physiotherapy sessions based on this VR 

serious exergame, this classification can help the physiotherapist keep track of the participant’s 

performance and assess which type of upper limb rehabilitation exercises, low angles, or high angles, 

are being executed, to check whether a patient is following the imposed training plan or not. 

Moreover, if a certain game intensity level is misclassified, e.g., a lower intensity game is classified as 

has a high intensity one, it may reveal that HRV levels selected are not at the most appropriate level. 

Thus, the imposed rehabilitation exercise may not be recommended for a particular patient and the 

physiotherapist should re-adjust the rehabilitation plan. A set of physiological data from 6 subjects 

containing HRV measures during a 4-minutes gameplay of two different intensity levels was created. 

The dataset comprises 8 features (HR, maximum HR, mean RR, SDNN, RMSSD, LF, HF and Stress Index) 

and a target, which is game intensity. For binary classification purposes, three different machine 

learning algorithms were considered in this study: SVM, KNN and DT. All classifiers were implemented 

using the Python programming language and Scikit-learn machine learning library. Pre-processing 

steps included label encoding of the prediction target, therefore converting categorical values that 

defined the game intensity into “0” (lower) and “1” (higher). A local outlier factor was (LOF) applied 

for identifying and removing outliers in the dataset. Considering the limited data samples, a cross-

validation technique based on k-fold cross-validation was applied for estimating the performance of 

our model, since the common train/test split method could exclude data points with useful 

information during the training phase. A 4-fold cross validation was considered regarding the total 

number of samples present in the dataset and the achievement of better classification results when 

compared with other values of k. The obtained performance metrics for our model are presented in 

Table 4.15. From the three classification models, KNN provided the highest classification accuracy of 

81% for the predicting game intensity level, and 0.789 for the best F1-score when compared with the 

other models.  

TABLE 4.15. Accuracy, precision, F1-score and recall values obtained for the three classification 
algorithms in a 4-fold cross validation 

Evaluation Metrics SVM KNN DT 

Accuracy 72% 81% 77% 

F1-score 0.714 0.789 0.639 

Recall 0.729 0.812 0.667 

Precision 0.792 0.792 0.575 



 

4.3.5. Remarks 

This study aimed to explore how virtual reality exergaming experiences can be related with autonomic 

nervous system responses, as a highly promising and effective engaging alternative to common 

physical activity exercises. Firstly, the main results from relevant works that attempted to investigate 

such influences based on physiological data analysis collected by wearable devices were presented. As 

a complementary tool for physical rehabilitation exercises, the impact of VR serious games on physical 

and cognitive performance, as well as on the rehabilitation process were also addressed. More 

contributions were made in this sense, as this present study sought to evaluate how a VR serious game 

for rehabilitation modulates physiological responses of younger adults. Two different game 

complexities were experienced by the subjects, and physiological data collected by biomedical 

wearable sensors evidenced significant changes in HRV parameters between each game difficulty 

levels. Stimulation of the parasympathetic branch of the ANS was mostly notable during easier 

difficulty game levels. On the other hand, it was verified that a higher intensity gameplay induced lower 

parasympathetic recovery during post-exercise/resting periods. Gameplays of longer time durations 

did not reveal a significant impact on physio-logical responses of younger adults, when compared with 

shorter ones.  

Finally, this contribution involved the implementation of machine learning algorithms to estimate 

the different serious game difficulty levels based on HRV measures, and it was verified that the k-NN 

algorithm achieved the best results amongst other classifiers. 

The study presented in this sub-chapter led to the publication of an article in a book chapter: M. 

Jacob Rodrigues, O. Postolache, F. Cercas, (2021). Autonomic Nervous System Assessment Based on 

HRV Analysis During Virtual Reality Serious Games. In N. T. Nguyen, L. Iliadis, I. Maglogiannis, & B. 

Trawiński (Eds.), Computational Collective Intelligence (pp. 756–768). Springer International Publishing 

|  https://doi.org/10.1007/978-3-030-88081-1_57 

 

 

 

https://doi.org/10.1007/978-3-030-88081-1_57
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4.4. Conclusions 

This chapter sought to address three different studies that collectively contributed to the 

measurement of the effects of external stimuli on human physiological status through innovative 

approaches that relied on the developed biomedical and environmental sensor nodes. The first study 

aimed to assess indoor environmental quality alongside cardiac and respiratory assessments based on 

the developed healthcare-IoT system. By analyzing temperature and relative humidity distributions in 

a non-isothermal office environment, the study demonstrated that changes in ambient conditions 

affect heart rate variability and respiratory rate, indicating the activation of thermal regulatory 

reflexes. Machine learning techniques were employed to predict human thermal comfort levels, 

achieving high accuracy rates. 

The second study explored the relationship between musical stimuli and noise stress, with the 

autonomic nervous system balance. By comparing the effects of different music genres and noise 

exposure on human physiological parameters, the study revealed that the music type and noise stress 

directly influence sympathetic and parasympathetic activity of the nervous system. Machine learning 

algorithms were employed to predict stress induced by auditory stimuli with good accuracy. 

The third study focused on the impact of virtual reality exergaming on the autonomic nervous 

system responses. Through physiological data collected during gameplay, the study identified that 

game complexity influenced heart rate variability parameters, with easier levels stimulating the 

parasympathetic branch. Additionally, prolonged intense gameplay affected parasympathetic recovery 

during rest. Machine learning was employed to predict game difficulty levels based on the heart rate 

variability measures, achieving good results. 

These studies emphasized the interconnections between external stimuli, physiological responses, 

and the autonomic nervous system. They highlighted the usefulness of advanced technologies such as 

IoT and machine learning, and thus, the utility of the developed system, to understand the complex 

interaction between environmental factors or stimuli, and human physiological well-being. 
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CHAPTER 5 

Indoor Localization and Behavior Monitoring of Users in 

Ambient Assisted Living Environments 

This chapter discusses the utilization and validation of the developed indoor localization and behaviour 

monitoring layer of the proposed system. It begins with and overview on the importance of integrating 

this layer in a AAL solution, as well as a reference to the available systems for monitoring such events. 

It then describes the indoor localization system and its components and presents the artificial 

intelligence algorithms to classify human activities and detect fall events. A results and discussion 

session reports the obtained system’ performance, and a conclusion section closes the chapter. 

5.1.  Overview 

With the ageing process, several problems arise, namely at the level of physical and motor health. One 

of the main aspects and challenges of AAL is the accurate localization of individuals within indoor 

environments and the recognition of their daily life activities. This is a crucial aspect of such assistive 

technologies since it allows the monitoring of their health conditions by detecting behavior patterns 

associated with certain daily activities.  

Mechanisms to effectively monitor daily life activities and detect falls are indispensable healthcare 

services in a smart environment, namely in an AAL environment. With the ability to be embedded in 

smart environments, there are different methods proposed in the literature for indoor localization and 

fall detection. Such systems can be wearable-based, vision-based, ambient-based or a data fusion 

between them [266], as addressed in Chapter 2. The recognition of the most common human activities, 

such as walking, sitting, going upstairs or downstairs and lying, and its fusion with the indoor location 

information allows a better and more precise estimation of movements and behavior of the individuals 

within the AAL environment. This recognition can be based on the analysis of acceleration and rotation 

patterns of the human body, by means of inertial sensors. Supervised ML algorithms are used to 

estimate these activities based on the 3-axis acceleration signals, and several studies have been 

reporting very good results on their classification and analyzing human posture by using these methods 

[267]–[270], as mentioned in Chapter 2. 

In this context, this study describes the development of an indoor localization and fall detection 

system based on a wearable sensor node using ultra-wide band (UWB) technology combined with 

acceleration and rotation patterns information of the human body. The activities classification and fall 

detection is performed using different ML models, such as SVM, RF, DT, MLP and recurrent neural 

networks (RNNs), namely long short-term memory (LSTM) networks. 



 

5.2. Indoor Localization 

This study aimed to estimate indoor positioning based on UWB technology, as well as to estimate the 

type of activity performed by the individual using the wearable sensor node. In the first part, the real-

time positioning of the person in the experimental room was tested. Initially, this validation of the 

positioning given by the UWB system was done by viewing the real-time position of the tag in the web 

application of the Pozyx® system. Then, after configuring the collection of UWB data by the ESP32 

microcontroller and the transmission of X, Y and Z coordinates to the gateway node, a graphical user 

interface was developed to visualize in real-time the accelerometer and gyroscope signals, as well as 

the location of the person and the type of activity she/he is performing. 

While choosing the right X and Y boundaries, the environment where the experiment took place 

was divided into different areas that correspond to the various room divisions of a house.  Additionally, 

each division was sub-divided into various small areas corresponding to where specific furniture is 

located, as demonstrated in Figure 5.1.  

 

FIGURE 5.1. Floor plan displaying the room divisions and the X and Y coordinates grid 
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Once the X and Y coordinates have been acquired by the gateway node, the developed user 

interface indicates which area of the environment the user is at, as the X and Y boundaries of the 

assigned spaces were adjusted until an ideal configuration was found. This was programmed using a 

JavaScript function in the Node-RED development tool. The accuracy of the used UWB system is 

considered to be highly precise, reaching an accuracy of up to 10 cm in a typical indoor environment 

[271]. The collection of X, Y and Z coordinates from the UWB tag and its association to specific locations 

in the environment showed no margin of error since this is entirely dependent on the adjustments of 

the X and Y limits of each room divisions programmed in the gateway node.  

Figure 5.2 displays the graphical user interface developed for this system, which aims to provide 

real-time tracking and monitoring of the wearable tag using the measured X and Y coordinates. 

 
FIGURE 5.2. Graphical user interface for the indoor localization system. Real-time accelerometer and 
gyro-scope data, UWB coordinates, and the room’s divisions are displayed 

By knowing the user’s location, it is possible to make a correlation between the activity estimated 

by the ML algorithms with the places where that same activity happens to reduce possible errors in 

the diagnosis. For example, if the activity "fall" is being detected in the area of the room corresponding 

to the position where the bed is located, the system disregards the alert. However, if the estimation 

of a fall is given in any other space, the system will accuse that event.  

 



 

5.3. Behaviour Monitoring and Fall Detection 

5.3.1. Methods 

The second part of this study involved activity estimation using the accelerometer and gyroscope data 

was based on the execution of the 6 most common daily activities: sitting, standing, walking, climbing 

stairs, walking downstairs, and lying down. In this phase, the participant was asked to perform the 

above-mentioned activities for approximately 25 seconds. The study included 28 participants aged 

between 22 and 55 years old. All participants provided informed consent before enrolling in the 

experiment. The purpose and procedures involved in this study were given before their participation. 

All participants reported being in good health and had no locomotor problems. The wearable sensor 

node was placed at the waist, centered in the back of the participants, as it is the body’s center of mass 

that can provide a good estimate of its overall orientation as it is a relatively stable location less prone 

to movement artifacts.  

Lastly, the system was used for fall detection purposes at a third stage of this study. Besides 

accelerometer and gyroscope data, Z-coordinate obtained with the UWB tag was also used for this 

classification. Three different activities were examined: falling, sitting, and standing. The sitting and 

standing activities were contemplated since a distinction must be made between a possible fall event 

and the person deliberately sitting on the ground. By considering standing as a distinct activity, the 

machine learning model will be able to identify certain movement patterns that are unique to this 

activity, helping to reduce false positives in fall detection. The data was acquired from a subject that 

performed these three activities ten times, with variations in the posture to simulate different 

scenarios. Each activity was recorded for 20 seconds. As for the sitting position, five recordings were 

made with the person sitting on the floor, and the remaining five sitting on a chair. The falling activity 

was considered as a person being already lying on the floor after the occurrence of a fall. By simulating 

this phase of a fall, the measured variables were better controlled, and the safety of the test 

participants was better ensured. 

 



119 

5.3.2. Applied AI for Human Activity Classification 

The different types of movements performed while doing the previously mentioned activities are 

characterized by different motion patterns of the x-axis, y-axis and z-axis of the accelerometer and 

gyroscope. The analysis of the acceleration and rotation patterns of these axis allow to easily 

distinguish between different types of movements. Walking has a very distinctive periodic pattern in 

the z-axis and larger movements in the x-axis and y-axis when compared to sitting or standing activities, 

which are stationary activities. Climbing stairs, for instance, has a similar pattern to walking, but can 

be distinguished by a more accentuated vertical component in the z-axis. These patterns can be seen 

in Figures 5.3-5.6, that depict 150 samples of 4 activities (walking, going upstairs, going downstairs, 

sitting), corresponding to a 6s time window. 

 

 
FIGURE 5.3. X, Y and Z-values of acceleration for the walking activity 

 
FIGURE 5.4. X, Y and Z-values of acceleration for the activity of going upstairs  



 

 
FIGURE 5.5. X, Y and Z-values of acceleration for the activity of going downstairs 

 

 

FIGURE 5.6. X, Y and Z-values of acceleration for the sitting activity 

The produced dataset has a total of 85923 instances and 6 features: acceleration in the x-axis, y-

axis and z-axis, and angular velocity in the x-axis, y-axis and z-axis. The number of samples collected by 

each participant for all activities are presented in Figure 5.7. For all ML models, 20% of the data was 

used for testing, and 80% was used for training. 

 

FIGURE. 5.7. Number of samples collected from each participant for all six activities 
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To achieve better performance levels with the machine learning algorithms, new informative 

features were generated based on raw accelerometer data. Common time-domain and frequency-

domain features used in the literature were selected [267], [268], and calculated using pandas and 

NumPy python libraries. These attributes were calculated for each acceleration axis within 5 second 

segments, which correspond to 120 samples, and using a sliding window of 50 samples. Regarding the 

time-domain, the following statistical measures were considered: mean value, standard deviation, 

average absolute deviation, minimum value, maximum value, median, median absolute deviation, 

negative values count, positive values count, number of values above mean, number of peaks, 

skewness, kurtosis, energy entropy and signal magnitude area. For the frequency-domain, the Fast-

Fourier Transform (FFT) was calculated using SciPy python package. As this method retrieves the 

frequency component of the time-series signal, it provided an additional way for analyzing the data. 

The above-mentioned measures used for time-domain analysis were also applied for the FFT data. 

With these feature extraction methods, a total of 90 new features were generated.  

After performing the feature extraction, ML classification algorithms were applied to make 

predictions about the type of activity performed by the participants. The used algorithms were SVM, 

DT, RF and MLP. Scikit-learn machine learning library for Python was used for this purpose. These 

algorithms were selected based on their ability to learn from complex data patterns. In addition, these 

are extensively studied algorithms that have demonstrated reaching high levels of accuracy in human 

activity recognition applications. To ensure the optimal performance of the machine learning 

algorithms, their hyper-parameters were fine-tuned. We used grid search cross-validation (CV) to 

systematically explore different combinations of hyperparameters and identify the best performing 

set for each algorithm [272]. The optimal hyperparameters for each ML model are shown in Table 5.1. 

TABLE 5.1. Hyperparameters selection of the ML models 

Classifiers Hyperparameter Type  Selected value 

SVM 
C Continuous 10 
kernel Categorical rbf 

RF 

criterion Categorical entropy 
max_depth Discrete 8 
n_estimators Discrete 300 
max_features Continuous sqrt 

DT 
criterion Categorical gini 
max_depth Discrete 9 
max_features Continuous auto 

MLP 

activation Categorical tanh 
alpha Continuous 0.05 
learning_rate Categorical adaptive 
solver Categorical adam 

 



 

Additionally, we explored the use of the Long Short-Term Memory (LSTM) algorithm [273], to 

predict the 6 activities based on the raw accelerometer and gyroscope data, without performing any 

of the traditional feature engineering process for human activity recognition. This comes with the 

thought that this approach may bring some limitations such as the possibility of information loss during 

feature extraction, and the lack of adaptability to new data. The LSTM is being considered to overcome 

these limitations by automatically learning the features from the raw sensor data. This algorithm is a 

type of Recurrent Neural Network (RNN) that can process entire sequences of data and learn long-

term dependencies. It introduces the concept of memory cells that can store information for longer 

periods. The information stored in these cells are controlled by a gating unit which, based on an 

activation function, will determine which information should be kept or discarded from the cell [273]. 

This algorithm is considered suitable for time-series data and sequential modeling and can learn 

the nonlinear relationships between features, which makes it useful for recognizing temporal 

sequences of activities over time. This approach excludes the need for feature engineering and may 

result in better performance than conventional techniques. The LSTM algorithm was computed using 

the Keras deep learning library with TensorFlow as the backend in Python programming language. The 

hyperparameters for this LSTM model were tuned using grid search cross-validation to find the best 

performance results and are listed in Table 5.2. 

TABLE 5.2. Hyperparameters for the LSTM model for human activity classification 

Hyperparameter Value 
Input time steps 50 
Input feature dimension 6 
Batch size 1024 
Learning Rate 0.002 
Optimization Algorithm Adam (b1 = 0.9, b2=0.999) 
Epochs 100 
Nodes in LSTM output layer 128 
Nodes in the Fully Connected layer 64 
Nodes in the softmax layer 6 

 

5.3.3. Applied AI for Fall Detection 

As analyzed in subsection 5.3.2, the different movements captured by the IMU are characterized 

by various motion patterns of the three-dimensional axes of the accelerometer and gyroscope. 

Moreover, the difference in the elevation (Z coordinate) of the wearable sensor given by the UWB 

system is what allows the analysis of the patient’s waist proximity to the ground, which is observed in 

the context of a fall. Z values closer to zero will be indicative of a possible fall, as it will be addressed 

in Section 5.4. B). 
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This new dataset has a total of 7756 instances. The fall class has a total of 2682 instances (34.58%), 

the standing class has a total of 2449 (31.58%), and the sitting class has a total of 2625 (33.84%).  

The choice of the neural network-based algorithm considered several criteria, namely its ability to 

deal with raw sensor data and to effectively learn complex time series patterns. Table 5.3 shows the 

hyperparameters selected for this algorithm. 

TABLE 5.3. Hyperparameters for the LSTM model for fall detection 

Hyperparameter Value 
Input time steps 30 
Input feature dimension 7 
Batch size 64 
Learning Rate 0.002 
Optimization Algorithm Adam (b1 = 0.9, b2=0.999) 
Epochs 50 
Nodes in LSTM output layer 64 
Nodes in the Fully Connected layer 64 
Nodes in the softmax layer 3 

 

5.4. Results and Discussion 

 This section reports the results obtained with the machine learning models for classifying human 

activities and detect fall events using the reported indoor localization wearable node. 

5.4.1. Human Activity Classification 

The classification of 6 human activities - sitting, standing, walking, climbing stairs, walking 

downstairs and laying – was done using the accelerometer and gyroscope data. The Random Forest 

algorithm achieved the highest accuracy of 93.9%, followed by Decision Trees with an accuracy of 

86.2%, Multilayer Perceptron with an accuracy of 81.5%, and SVM with an accuracy of 71.2% (Table 

5.4). 

TABLE 5.4. Accuracy, precision, recall and F1-score values obtained for the RF, DT, SVM and MLP, 
when classifying human activities 

Evaluation Metric RF DT SVM MLP 

Accuracy 0.939 0.862 0.712  0.815 

Precision 0.938 0.865 0.757  0.817 

Recall 0.938 0.863 0.713  0.816 

F1 Score 0.938 0.862 0.724  0.815 

 

Furthermore, LSTM was applied only to the raw accelerometer and gyroscope signals without 

requiring any additional feature engineering. In this case, LSTM achieved an accuracy of 92.6% (Table 

5.5), which is comparable to the best performing machine learning algorithms previously tested.  



 

The LSTM training session’s progress over the iterations is presented in Figure 5.8. A decreasing 

trend in the validation and train loss and an increasing trend in accuracy over the course of training 

shows a good improvement of the model over the epochs. 

 
FIGURE 5.8. Logarithmic loss of the LSTM algorithm over 100 epochs 

Additionally, the obtained confusion matrix is depicted in Figure 5.9. 

 
FIGURE 5.9. Confusion matrix for the estimation of 6 activities using LSTM. 
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A receiver operating characteristic curve (ROC) curve was computed for each class (i.e., type of 

activity), separately. The area under the ROC curve (AUC) showed how well the classifier was able to 

distinguish between the different activities. The LSTM achieved high AUC values for all six classes, 

which ranged from 0.98 to 1.00, as demonstrated in Figure 5.10. The “standing” activity (class 1) 

achieved the perfect score, while the “lying” activity (class 5) achieved 0.98. 

 
FIGURE 5.10. ROC curve and AUC values for each class using the LSTM algorithm. 

These results demonstrate that using accelerometer and gyroscope data with appropriate feature 

engineering and machine learning algorithms, various types of physical activities can accurately be 

classified. The Random Forest algorithm had the best performance results, which is consistent with 

previous studies that have shown this model to be a robust and accurate algorithm for classification 

tasks, especially with human activity recognition [270].  

It was also found that traditional machine learning algorithms, such as Decision Trees and 

Multilayer Perceptron, can achieve high accuracy with appropriate feature extraction and 

hyperparameter tuning. SVM, on the other hand, did not perform as well as expected, which may be 

due to the imbalanced nature of the dataset. 

5.4.2. Fall Detection 

Regarding the fall detection, which consisted in the use of a new dataset, three different activities 

were considered for this particular case: fall, sitting and standing. The possibility of adding the 

information from the UWB location data was tested, namely the elevation given by the Z coordinate, 

to the data collected by the IMU. An LSTM model was used for this classification task, since there will 

not be any feature extraction, as the data to be analysed will be raw sensor data. The dataset is 

composed of acceleration and gyroscope data, as well as the elevation of the wearable sensor node (Z 

coordinate). The addition of this last parameter is expected to improve the model’s performance on 

detecting fall events. 



 

By conducting data analysis, it was possible to verify that the different activities are relatively well 

distinguished regarding the Z coordinate measured by the UWB system. Figure 5.11 shows evidence, 

displaying the density distribution of the different values of the Z coordinate for the different activities, 

from 0 to 1.  

 
FIGURE 5.11. Density distribution of the z-coordinate for the different activities (fall, sitting and 
standing) 

The activity corresponding to falling presents in fact lower Z values, since the person is on the 

ground. The sitting activity, which includes both sitting on the floor and sitting on a chair, presents 

higher average values, and it is possible to distinguish in the figure the occasions when the person was 

sitting on the floor, whose values are closer to the falling activity, than when the person was sitting on 

a chair. It should be noted that the values given by the UWB system are not static and suffer 

fluctuations due to the nature of the transmission as well as a variety of other environmental factors, 

such as the presence of objects in the transmission path, as well as other wireless signals that cause 

interference. 

The model’s performance for this case was evaluated using several metrics (Table 5.5), including 

accuracy, macro-averaged precision, macro-averaged recall, and macro-averaged F1-score, since it is 

a multiclass classification problem.  TCN and GRU neural network models were also tested to ascertain 

whether its performance was in fact similar to the LSTM’s and thus support the choice of this algorithm. 

The TCN was able to achieve 93.2% accuracy, while the GRU achieved 85.4% accuracy.  
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TABLE 5.5. LSTM performance on classifying human activities and estimating fall events 

Evaluation Metrics Activity Classification Fall Detection 

Accuracy 0.926 0.958 
Macro-averaged Precision 0.899 0.958 
Macro-averaged Recall 0.906 0.954 
Macro-averaged F1 Score 0.902 0.955 

These algorithms had lower performance than LSTM, so the next results are only about the LSTM’s 

performance.  

 

FIGURE 5.12. Logarithmic loss of the LSTM algorithm over 50 epochs 

The macro-averaged recall was 0.954, indicating that the model has a good sensitivity to detecting 

each activity or event. The LSTM training session’s progress over the iterations is presented in Figure 

5.12. Receiver operating characteristic curves (ROC) were obtained. Figure 5.13 shows the confusion 

matrix and ROC curves of the LSTM model. The ROC curves show that the model performs well at 

distinguishing between the three activities, with an area under the curve (AUC) of 1.00 for falling, 1.00 

for sitting, and 0.99 for standing. 



 

 

FIGURE 5.13. a) Confusion matrix and b) ROC curves for the classification of fall events using LSTM. 
Class 0: fall, Class 1: sitting, Class 2: standing 

5.5. Conclusions 

This chapter aimed to report the use of the developed indoor localization sensor node to monitor 

human behavior and classify fall events in the context of an AAL system. 3D acceleration and rotation 

data of the human body were obtained for 28 participants to estimate six different types of common 

human activities, such as sitting, standing, walking, climbing stairs, walking downstairs, and lying. 

Various machine learning algorithms were used in this classification task. Feature extraction methods 

based on time-domain and frequency-domain were applied to the raw acceleration data for improving 

the ML models performance. The RF algorithm achieved the highest accuracy of 93.9%, followed by 

DT, MLP and SVM. Furthermore, the LSTM algorithm, having as input the raw accelerometer and 

gyroscope signals, achieved a very good accuracy of 92.6%. Achieving such good performance without 

requiring feature engineering of the recorded data led us to choose the LSTM algorithm to classify fall 

events. Therefore, as the final part of the behavior monitoring and indoor localization layer proposed 

for this thesis, LSTM neural networks were trained to detect fall events using the data measured by 

the developed wearable sensor. The algorithm achieved a promising accuracy of 95.8 % in classifying 

fall events as well as sitting and standing activities. For this purpose, not only the acceleration and 

rotation patterns of the human body were used, but also the coordinates given by the UWB system. In 

this way, this study allowed us to make the connection between the location where the person is and 

the type of activity they are performing. 

The study presented in this chapter led to the publication of an article in a book chapter: M. Jacob 

Rodrigues, O. Postolache, F. Cercas, (2023). Wearable Tag for Indoor Localization in the Context of 

Ambient Assisted Living. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. 

Lecture Notes in Computer Science(), vol 14162. Springer International Publishing. 

https://doi.org/10.1007/978-3-031-41456-5_32

a) b) 
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CHAPTER 6 

Conclusions and Future Work 
As technology advances, there are constantly innovative solutions for assisted living systems and 

healthcare assessment. The proposal of new architectures is essential to reach healthy, elderly, or 

disabled individuals and improve their quality of life. Smart tailored environments and AAL systems 

are based on the architecture of an IoT-based healthcare system and have a special focus on providing 

personalized and assistive services for their inhabitants. Through the monitoring of several 

physiological parameters and behavior patterns, these environments have the main purpose of 

determining a person's physical and mental health status and help to extend the person autonomy for 

a better quality of life for optimized healthcare costs. 

6.1. Conclusions 

In response to these challenges, the thesis research work focused on developing of smart tailored 

environments characterized by healthcare assessment components. These components include 

biomedical sensor nodes for vital signs monitoring and ambient sensors for evaluating indoor air 

quality conditions for user wellbeing. The system also involves recognizing behaviors and daily life 

activities based on artificial intelligence software modules. Moreover, this research work includes a 

comprehensive study on how several external stimuli can affect well-being through the usage of 

metrics associated with autonomous nervous system.  

The first component developed for this AAL system was the physiological parameters acquisition 

layer. Among the existing techniques for monitoring cardiac activity, photoplethysmography and 

ballistocardiography were the signal acquisition techniques that were used, not only because of their 

effectiveness, but primarily because of their non-intrusive and easy-to-use characteristics. A 

biomedical sensor node based on BCG was developed with the aim of offering measurements of 

cardiorespiratory activity without the user having to wear any kind of device. To this end, the BCG 

sensor was installed on the seat of a chair, making the presence of a medical device imperceptible to 

the user. 

 Advanced digital signal processing techniques were implemented to improve the signal noise 

ratio as to extract the heart rate, heart rate variability and respiratory rate in accurate mode. The 

validation of the BCG based measurements were caried out using certified medical systems.  



 

With the aim to increase the user mobility wearable cardio-respiratory monitoring system 

expressed by two sensor nodes prototypes characterized by photoplethysmography measurement 

channel were reported in this thesis. Both sensor nodes are designed to be placed at distinct locations 

on the body to optimize user mobility. The first prototype consists of a compact wearable node 

designed for a versatile placement across the body. The research contribution inherent in the 

development of this wearable system is expressed by optimized algorithms for calculating heart rate 

variability parameters in real time. The developed algorithm and the calculation of HRV have been 

validated using ECG measurement reference systems, which is the gold standard technique for 

measuring cardiac activity. The second prototype consists of an ear-worn sensor node, which runs the 

same algorithm in optimized embedded form, taking also into account the power consumption.  

The second system component was the monitoring of human behavior and daily activities through 

motion tracking and indoor localization technologies. To this end, an indoor localization and fall 

detection system that includes a set of new wearable sensor nodes characterized by ultra-wide band 

technology was developed. The node provides acceleration and rotation patterns information of the 

human body that are very important on fall detection. The classification of daily human activities as 

well as fall events were made using ML algorithms, that were able to achieve accuracies of over 95%. 

The third system component was the indoor environmental quality layer. This layer is expressed 

by a portable prototype, which can be used both indoors and outdoors. The developed sensor nodes 

make it possible to monitor air quality, namely the most common pollutants in urban spaces, such as 

PM10 and PM2.5, CO, CO2, tVOC and Smoke, as well as temperature, relative humidity, and sound 

levels.  

The devices are interconnected within an IoT framework, referred to as the device layer. An 

essential component of this system, the gateway node, served as the basis for edge computing. Its 

main function was to gather and process the information collected from the sensor nodes array. This 

gateway node was specifically designed to store data locally or transmit it efficiently to remote cloud-

based databases. In this way, the system guaranteed greater efficiency in data processing and 

optimization of edge computing capabilities, enhancing the system’s capacity for real-time processing, 

and ensuring flexibility in the data management of the different sensor nodes. 
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Specific research work was the validation of the developed system. Thus, all the novel solutions 

for the smart tailored system were validated in real case scenarios, and several studies were reported 

throughout this thesis. These studies sought to interconnect the different layers and explore the inter-

relations between the measured parameters acquired and processed by each layer. In the first study, 

a healthcare-IoT system integrated the unobtrusive BCG sensor node to monitor cardiac activity in 

different indoor environmental conditions of an office environment, employing machine learning to 

predict thermal comfort levels based on heart rate variability changes. The second study explored the 

music's impact and stress noise on the autonomic nervous system by using the PPG sensor node, 

revealing distinct sympathetic responses to different music genres, and using machine learning to 

accurately predict stress levels induced by auditory stimuli. In the third study, the effects of virtual 

reality exergaming on physiological and cognitive states were investigated, discovering a varying 

influence of game complexity on the parasympathetic branch. By employing machine learning models, 

it was successfully achieved an 81% accuracy rate in predicting game difficulty levels through heart 

rate variability measurements, which can be used to monitor the subject's physical performance and 

adjust the game’s difficulty levels automatically.  This adaptive feature serves to mitigate potential 

accidents resulting from excessively high exercise intensity during gameplay.  

Human daily activities, fall events and real-time location were estimated by using the developed 

wearable indoor localization sensor node with UWB communication capabilities, achieving very good 

accuracy rates above 92%. 

The obtained results show the efficiency and accuracy of the developed sensor networks and 

implemented algorithms. Based on these evaluations and on the positive user feedback, the proposed 

system effectively addressed all the relevant components and healthcare assistive services, such as 

vital signs monitoring, indoor environmental assessment, human activity recognition and cognitive 

stimulation. This comprehensive approach facilitated the implementation of a smart tailored 

environment for AAL, specifically designed to address the needs of elderly populations, individuals with 

chronic diseases, and even those in good health. 

 

 

 

 

 

 

 

 

 



 

6.2 Future Work 

Although everything that was proposed in the planning of this thesis has been accomplished, 

including the integration of different assistive services essential for AAL environments, there are still 

some remaining steps that are part of future work. These improvements consist of: 

•  Improving the design of wearable sensor nodes to create optimized models, with the aim of 

improving comfort and usability when using them. To achieve this goal acquisition platforms 

with lower power consumption and lower computation load will be incorporated, along with 

the development of a more ergonomic design. 

• Implementation of novel federated embedded processing for extended scalability according 

to the future AAL architecture requirements. 

• Integration of an AAL smart sensing solution with virtual reality and mixed reality scenarios. 

• Construction of a larger dataset for the machine learning algorithms to achieve even more 

promising results in the classification tasks. This substantial increase is essential to allow the 

system to be personalised and adapted to the unique needs of everyone. 
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